ترغب بنشر مسار تعليمي؟ اضغط هنا

$3$-tuple total domination number of rooks graphs

66   0   0.0 ( 0 )
 نشر من قبل Michele Torielli
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A $k$-tuple total dominating set ($k$TDS) of a graph $G$ is a set $S$ of vertices in which every vertex in $G$ is adjacent to at least $k$ vertices in $S$. The minimum size of a $k$TDS is called the $k$-tuple total dominating number and it is denoted by $gamma_{times k,t}(G)$. We give a constructive proof of a general formula for $gamma_{times 3, t}(K_n Box K_m)$.



قيم البحث

اقرأ أيضاً

Let $ G $ be a graph. A subset $S subseteq V(G) $ is called a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $S$. The total domination number, $gamma_{t}$($G$), is the minimum cardinality of a total dominating set o f $G$. In this paper using a greedy algorithm we provide an upper bound for $gamma_{t}$($G$), whenever $G$ is a bipartite graph and $delta(G)$ $geq$ $k$. More precisely, we show that if $k$ > 1 is a natural number, then for every bipartite graph $G$ of order $n$ and $delta(G) ge k$, $ $$gamma_{t}$($G$) $leq$ $n(1- frac{k!}{prod_{i=0}^{k-1}(frac{k}{k-1}+i)}).$
For a graph $G=(V,E)$, we call a subset $ Ssubseteq V cup E$ a total mixed dominating set of $G$ if each element of $V cup E$ is either adjacent or incident to an element of $S$, and the total mixed domination number $gamma_{tm}(G)$ of $G$ is the min imum cardinality of a total mixed dominating set of $G$. In this paper, we initiate to study the total mixed domination number of a connected graph by giving some tight bounds in terms of some parameters such as order and total domination numbers of the graph and its line graph. Then we discuss on the relation between total mixed domination number of a graph and its diameter. Studing of this number in trees is our next work. Also we show that the total mixed domination number of a graph is equale to the total domination number of a graph which is obtained by the graph. Giving the total mixed domination numbers of some special graphs is our last work.
In this paper, we study the domination number of middle graphs. Indeed, we obtain tight bounds for this number in terms of the order of the graph. We also compute the domination number of some families of graphs such as star graphs, double start grap hs, path graphs, cycle graphs, wheel graphs, complete graphs, complete bipartite graphs and friendship graphs, explicitly. Moreover, some Nordhaus-Gaddum-like relations are presented for the domination number of middle graphs.
We show that every n-vertex cubic graph with girth at least g have domination number at most 0.299871n+O(n/g)<3n/10+O(n/g).
A total dominator coloring of a graph G is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dom inator coloring. In this article, we study the total dominator coloring on middle graphs by giving several bounds for the case of general graphs and trees. Moreover, we calculate explicitely the total dominator chromatic number of the middle graph of several known families of graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا