ﻻ يوجد ملخص باللغة العربية
We deal with the obstacle problem for the porous medium equation in the slow diffusion regime $m>1$. Our main interest is to treat fairly irregular obstacles assuming only boundedness and lower semicontinuity. In particular, the considered obstacles are not regular enough to work with the classical notion of variational solutions, and a different approach is needed. We prove the existence of a solution in the sense of the minimal supersolution lying above the obstacle. As a consequence, we can show that non-negative weak supersolutions to the porous medium equation can be approximated by a sequence of supersolutions which are bounded away from zero.
We study a kind of generalized porous medium equation with fractional Laplacian and abstract pressure term. For a large class of equations corresponding to the form: $u_t+ u Lambda^{beta}u= ablacdot(u abla Pu)$, we get their local well-posedness in F
We study finite time blow-up and global existence of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term. We show that for small enough initial data, if $rho(x)sim frac{1}{lef
The singular limit of the thin film Muskat problem is performed when the density (and possibly the viscosity) of the lighter fluid vanishes and the porous medium equation is identified as the limit problem. In particular, the height of the denser flu
The final goal of this paper is to prove existence of local (strong) solutions to a (fully nonlinear) porous medium equation with blow-up term and nondecreasing constraint. To this end, the equation, arising in the context of Damage Mechanics, is ref
We study existence of global solutions and finite time blow-up of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term $rho(x) u^p$ with $p>1$; this is a mathematical model of