ﻻ يوجد ملخص باللغة العربية
Directed graphical models specify noisy functional relationships among a collection of random variables. In the Gaussian case, each such model corresponds to a semi-algebraic set of positive definite covariance matrices. The set is given via parametrization, and much work has gone into obtaining an implicit description in terms of polynomial (in-)equalities. Implicit descriptions shed light on problems such as parameter identification, model equivalence, and constraint-based statistical inference. For models given by directed acyclic graphs, which represent settings where all relevant variables are observed, there is a complete theory: All conditional independence relations can be found via graphical $d$-separation and are sufficient for an implicit description. The situation is far more complicated, however, when some of the variables are hidden (or in other words, unobserved or latent). We consider models associated to mixed graphs that capture the effects of hidden variables through correlated error terms. The notion of trek separation explains when the covariance matrix in such a model has submatrices of low rank and generalizes $d$-separation. However, in many cases, such as the infamous Verma graph, the polynomials defining the graphical model are not determinantal, and hence cannot be explained by $d$-separation or trek-separation. In this paper, we show that these constraints often correspond to the vanishing of nested determinants and can be graphically explained by a notion of restricted trek separation.
Building on the theory of causal discovery from observational data, we study interactions between multiple (sets of) random variables in a linear structural equation model with non-Gaussian error terms. We give a correspondence between structure in t
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the num
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which corres
Causal models with unobserved variables impose nontrivial constraints on the distributions over the observed variables. When a common cause of two variables is unobserved, it is impossible to uncover the causal relation between them without making ad
The Gaussian graphical model, a popular paradigm for studying relationship among variables in a wide range of applications, has attracted great attention in recent years. This paper considers a fundamental question: When is it possible to estimate lo