ﻻ يوجد ملخص باللغة العربية
The properties of molecular gas, the fuel that forms stars, inside the cavity of the circumnuclear disk (CND) are not well constrained. We present results of a velocity-resolved submillimeter scan (~480 to 1250 GHz}) and [CII]158um line observations carried out with Herschel/HIFI toward Sgr A*; these results are complemented by a ~2x2 CO (J=3-2) map taken with the IRAM 30 m telescope at ~7 resolution. We report the presence of high positive-velocity emission (up to about +300 km/s) detected in the wings of CO J=5-4 to 10-9 lines. This wing component is also seen in H2O (1_{1,0}-1_{0,1}) a tracer of hot molecular gas; in [CII]158um, an unambiguous tracer of UV radiation; but not in [CI]492,806 GHz. This first measurement of the high-velocity CO rotational ladder toward Sgr A* adds more evidence that hot molecular gas exists inside the cavity of the CND, relatively close to the supermassive black hole (< 1 pc). Observed by ALMA, this velocity range appears as a collection of CO (J=3-2) cloudlets lying in a very harsh environment that is pervaded by intense UV radiation fields, shocks, and affected by strong gravitational shears. We constrain the physical conditions of the high positive-velocity CO gas component by comparing with non-LTE excitation and radiative transfer models. We infer T_k~400 K to 2000 K for n_H~(0.2-1.0)x10^5 cm^-3. These results point toward the important role of stellar UV radiation, but we show that radiative heating alone cannot explain the excitation of this ~10-60 M_Sun component of hot molecular gas inside the central cavity. Instead, strongly irradiated shocks are promising candidates.
We aim at modelling small groups of young stars such as IRS 13N, 0.1 pc away from Sgr A*, which is suggested to contain a few embedded massive young stellar objects. We perform hydrodynamical simulations to follow the evolution of molecular clumps or
To date O2 has definitely been detected in only two sources, namely rho Oph A and Orion, reflecting the extremely low abundance of O2 in the interstellar medium. One of the sources in the HOP program is the +50 km/s Cloud in the Sgr A Complex in the
Two modes of star formation are involved to explain the origin of young stars near Sgr A*. One is a disk-based mode, which explains the disk of stars orbiting Sgr A*. The other is the standard cloud-based mode observed in the Galactic disk. We discus
Thioformamide NH2CHS is a sulfur-bearing analog of formamide NH2CHO. The latter was detected in the interstellar medium back in the 1970s. Most of the sulfur-containing molecules detected in the interstellar medium are analogs of corresponding oxygen
We summarize recent observations and modeling of the brightest Sgr A* flare to be observed simultaneously in (near)-infrared and X-rays to date. Trying to explain the spectral characteristics of this flare through inverse Compton mechanisms implies p