Spin transport in a graphene normal-superconductor junction in the quantum Hall regime


الملخص بالإنكليزية

The quantum Hall regime of graphene has many unusual properties. In particular, the presence of a Zeeman field opens up a region of energy within the zeroth Landau level, where the spin-up and spin-down states localized at a single edge propagate in opposite directions. We show that when these edge states are coupled to an s-wave superconductor, the transport of charge carriers is spin-filtered. This spin-filtering effect can be traced back to the interplay of specular Andreev reflections and Andreev retro-reflections in the presence of a Zeeman field.

تحميل البحث