ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin transport in a graphene normal-superconductor junction in the quantum Hall regime

152   0   0.0 ( 0 )
 نشر من قبل Tibor Sekera
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum Hall regime of graphene has many unusual properties. In particular, the presence of a Zeeman field opens up a region of energy within the zeroth Landau level, where the spin-up and spin-down states localized at a single edge propagate in opposite directions. We show that when these edge states are coupled to an s-wave superconductor, the transport of charge carriers is spin-filtered. This spin-filtering effect can be traced back to the interplay of specular Andreev reflections and Andreev retro-reflections in the presence of a Zeeman field.



قيم البحث

اقرأ أيضاً

79 - E.G. Novik , B. Trauzettel , 2019
We investigate transport through a normal-superconductor (NS) junction made from a quantum spin Hall (QSH) system with helical edge states and a two-dimensional (2D) chiral topological superconductor (TSC) having a chiral Majorana edge mode. We emplo y a two-dimensional extended four-band model for HgTe-based quantum wells in a magnetic (Zeeman) field and subject to s-wave superconductivity. We show using the Bogoliubov-de Gennes scattering formalism that this structure provides a striking transport signal of a 2D TSC. As a function of the sample width (or Fermi energy) the conductance resonances go through a sequence of $2e^2/h$ (non-trivial phase) and $4e^2/h$ plateaux (trivial phase) which fall within the region of a non-zero Chern number (2D limit) as the sample width becomes large. These signatures are a manifestation of the topological nature of the QSH effect and the TSC.
We have studied the breakdown of the integer quantum Hall (QH) effect with fully broken symmetry, in an ultra-high mobility graphene device sandwiched between two single crystal hexagonal boron nitride substrates. The evolution and stabilities of the QH states are studied quantitatively through the nonlinear transport with dc Hall voltage bias. The mechanism of the QH breakdown in graphene and the movement of the Fermi energy with the electrical Hall field are discussed. This is the first study in which the stabilities of fully symmetry broken QH states are probed all together. Our results raise the possibility that the v=6 states might be a better target for the quantum resistance standard.
Optical excitation provides a powerful tool to investigate non-equilibrium physics in quantum Hall systems. Moreover, the length scale associated with photo-excited charge carries lies between that of local probes and global transport measurements. H ere, we investigate non-equilibrium physics of optically-excited charge carriers in graphene through photocurrent measurements in the integer quantum Hall regime. We observe that the photocurrent oscillates as a function of Fermi level, revealing the Landau-level quantization, and that the photocurrent oscillations are different for Fermi levels near and distant from the Dirac point. Our observation qualitatively agrees with a model that assumes the photocurrent is dominated by chiral edge transport of non-equilibrium carriers. Our experimental results are consistent with electron and hole chiralities being the same when the Fermi level is distant from the Dirac point, and opposite when near the Dirac point.
A superconductor subject to electromagnetic irradiation in the terahertz range can show amplitude oscillations of its order parameter. However, coupling this so-called Higgs mode to the charge current is notoriously difficult. We propose to achieve s uch a coupling in a particle-hole-asymmetric configuration using a DC-voltage-biased normal-metal--superconductor tunnel junction. Using the quasiclassical Greens function formalism, we demonstrate three characteristic signatures of the Higgs mode: (i) The AC charge current exhibits a pronounced resonant behavior and is maximal when the radiation frequency coincides with the order parameter. (ii) The AC charge current amplitude exhibits a characteristic nonmonotonic behavior with increasing voltage bias. (iii) At resonance for large voltage bias, the AC current vanishes inversely proportional to the bias. These signatures provide an electric detection scheme for the Higgs mode.
We report on the fabrication and transport studies of a single-layer graphene p-n junction. Carrier type and density in two adjacent regions are individually controlled by electrostatic gating using a local top gate and a global back gate. A function alized Al203 oxide that adheres to graphene and does not significantly affect its electronic properties is described. Measurements in the quantum Hall regime reveal new plateaus of two-terminal conductance across the junction at 1 and 3/2 times the quantum of conductance, e2/h, consistent with theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا