ترغب بنشر مسار تعليمي؟ اضغط هنا

The Frequency of Dwarf Galaxy Multiples at Low Redshift in SDSS vs. Cosmological Expectations

75   0   0.0 ( 0 )
 نشر من قبل Gurtina Besla
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We quantify the frequency of companions of low redshift ($0.013 < z < 0.0252$), dwarf galaxies ($2 times 10^8$ M$_odot <$ M$_{*} < 5 times 10^9$ M$_odot$) that are isolated from more massive galaxies in SDSS and compare against cosmological expectations using mock observations of the Illustris simulation. Dwarf multiples are defined as 2 or more dwarfs that have angular separations > 55, projected separations r$_p < 150$ kpc and relative line-of-sight velocities $Delta V_{rm LOS} < 150$ km/s. While the mock catalogs predict a factor of 2 more isolated dwarfs than observed in SDSS, the mean number of observed companions per dwarf is $N_c sim 0.04$, in good agreement with Illustris when accounting for SDSS sensitivity limits. Removing these limits in the mock catalogs predicts $N_csim 0.06$ for future surveys (LSST, DESI), which will be complete to M$_* = 2times 10^8$ M$_odot$. The 3D separations of mock dwarf multiples reveal a contamination fraction of $sim$40% in observations from projection effects. Most isolated multiples are pairs; triples are rare and it is cosmologically improbable that bound groups of dwarfs with more than 3 members exist within the parameter range probed in this study. We find that $<$1% of LMC-analogs in the field have an SMC-analog companion. The fraction of dwarf Major Pairs (stellar mass ratio $>$1:4) steadily increases with decreasing Primary stellar mass, whereas the cosmological Major Merger rate (per Gyr) has the opposite behaviour. We conclude that cosmological simulations can be reliably used to constrain the fraction of dwarf mergers across cosmic time.



قيم البحث

اقرأ أيضاً

We use a suite of high-resolution cosmological dwarf galaxy simulations to test the accuracy of commonly-used mass estimators from Walker et al.(2009) and Wolf et al.(2010), both of which depend on the observed line-of-sight velocity dispersion and t he 2D half-light radius of the galaxy, $Re$. The simulations are part of the the Feedback in Realistic Environments (FIRE) project and include twelve systems with stellar masses spanning $10^{5} - 10^{7} M_{odot}$ that have structural and kinematic properties similar to those of observed dispersion-supported dwarfs. Both estimators are found to be quite accurate: $M_{Wolf}/M_{true} = 0.98^{+0.19}_{-0.12}$ and $M_{Walker}/M_{true} =1.07^{+0.21}_{-0.15}$, with errors reflecting the 68% range over all simulations. The excellent performance of these estimators is remarkable given that they each assume spherical symmetry, a supposition that is broken in our simulated galaxies. Though our dwarfs have negligible rotation support, their 3D stellar distributions are flattened, with short-to-long axis ratios $ c/a simeq 0.4-0.7$. The accuracy of the estimators shows no trend with asphericity. Our simulated galaxies have sphericalized stellar profiles in 3D that follow a nearly universal form, one that transitions from a core at small radius to a steep fall-off $propto r^{-4.2}$ at large $r$, they are well fit by Sersic profiles in projection. We find that the most important empirical quantity affecting mass estimator accuracy is $Re$ . Determining $Re$ by an analytic fit to the surface density profile produces a better estimated mass than if the half-light radius is determined via direct summation.
Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called ``jellyfish galaxies, that exhibit tentacles of debris material with a characteristic jel lyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z=0.04-0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses. Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion sigma or X-ray luminosity L_X. Interestingly, convincing cases of candidates are also found in groups and lower mass haloes (10^{11}-10^{14} M_{sun}), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M_{sun} < 9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5 sigma) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that the stripping phenomenon is ubiquitous in clusters and could be present even in groups and low mass haloes. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.
86 - D. Bettoni 2015
We present a photometrical and morphological multicolor study of the properties of low redshift (z<0.3) quasar hosts based on a large and homogeneous dataset of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger dataset of ~400 quasars at z<0.5 for which both the host galaxies and their galaxy environments were studied (Falomo et al. 2014,Karhunen et al. 2014). For 52 quasars we undertake a study of the color of the host galaxies and of their close environments in u,g,r,i and z bands. We are able to resolve almost all the quasars in the sample in the filters g,r,i and z and also in $u$ for about 50% of the targets. We found that the mean colors of the QSO host galaxy (g-i=0.82+-0.26; r-i=0.26+-0.16 and u-g=1.32+-0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colors.Both quasar hosts and the comparison sample of inactive galaxies have candidates of close ($<$ 50 kpc) companion galaxies for ~30% of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (M_BH -- M_host) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated to the BH mass, is present in the galaxies hosting low z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.
Binary stars make up a significant portion of all stellar systems. Consequently, an understanding of the bulk properties of binary stars is necessary for a full picture of star formation. Binary surveys indicate that both multiplicity fraction and ty pical orbital separation increase as functions of primary mass. Correlations with higher order architectural parameters such as mass ratio are less well constrained. We seek to identify and characterize double-lined spectroscopic binaries (SB2s) among the 1350 M dwarf ancillary science targets with APOGEE spectra in the SDSS-III Data Release 13. We measure the degree of asymmetry in the APOGEE pipeline cross-correlation functions (CCFs), and use those metrics to identify a sample of 44 high-likelihood candidate SB2s. At least 11 of these SB2s are known, having been previously identified by Deshapnde et al, and/or El Badry et al. We are able to extract radial velocities (RVs) for the components of 36 of these systems from their CCFs. With these RVs, we measure mass ratios for 29 SB2s and 5 SB3s. We use Bayesian techniques to fit maximum likelihood (but still preliminary) orbits for 4 SB2s with 8 or more distinct APOGEE observations. The observed (but incomplete) mass ratio distribution of this sample rises quickly towards unity. Two-sided Kolmogorov-Smirnov tests and probabilities of 18.3% and 18.7%, demonstrating that the mass ratio distribution of our sample is consistent with those measured by Pourbaix et al. and Fernandez et al., respectively.
123 - Seunghwan Lim , Houjun Mo , Yi Lu 2017
We apply a halo-based group finder to four large redshift surveys, the 2MRS, 6dFGS, SDSS and 2dFGRS, to construct group catalogs in the low-redshift Universe. The group finder is based on that of Yang et al. but with an improved halo mass assignment so that it can be applied uniformly to various redshift surveys of galaxies. Halo masses are assigned to groups according to proxies based on the stellar mass/luminosity of member galaxies. The performances of the group finder in grouping galaxies according to common halos and in halo mass assignments are tested using realistic mock samples constructed from hydrodynamical simulations and empirical models of galaxy occupation in dark matter halos. Our group finder finds $sim 94%$ of the correct true member galaxies for $90-95%$ of the groups in the mock samples; the halo masses assigned by the group finder are un-biased with respect to the true halo masses, and have a typical uncertainty of $sim0.2,{rm dex}$. The properties of group catalogs constructed from the observational samples are described and compared with other similar catalogs in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا