We uncover a new quantum paradox, where a simple question about two identical quantum systems reveals unsettlingly paradoxical answers when weak measurements are considered. Our resolution of the paradox, from within the weak measurement framework, amounts to a proof of counterfactuality for our generalised protocol (2014)---the first to do so---for sending an unknown qubit without any particles travelling between the communicating parties, i.e. counterfactually. The paradox and its resolution are reproduced from a consistent-histories viewpoint. We go on to propose a novel, experimentally feasible implementation of this counterfactual disembodied transport that we call counterportation, based on cavity quantum electrodynamics, estimating resources for beating the no-cloning fidelity limit---except that unlike teleportation no previously-shared entanglement nor classical communication are required. Our approach is up to several orders of magnitude more efficient in terms of physical resources than previously proposed techniques and is remarkably tolerant to device imperfections. Surprisingly, while counterfactual communication is intuitively explained in terms of interaction-free measurement and the Zeno effect, we show based on our proposed scheme that neither is necessary, with implications in support of an underlying physical reality.