ﻻ يوجد ملخص باللغة العربية
We study half-BPS surface operators in four dimensional N=2 SU(N) gauge theories, and analyze their low-energy effective action on the four dimensional Coulomb branch using equivariant localization. We also study surface operators as coupled 2d/4d quiver gauge theories with an SU(N) flavour symmetry. In this description, the same surface operator can be described by different quivers that are related to each other by two dimensional Seiberg duality. We argue that these dual quivers correspond, on the localization side, to distinct integration contours that can be determined by the Fayet-Iliopoulos parameters of the two dimensional gauge nodes. We verify the proposal by mapping the solutions of the twisted chiral ring equations of the 2d/4d quivers onto individual residues of the localization integrand.
Alday, Gaiotto, and Tachikawa conjectured relations between certain 4d N=2 supersymmetric field theories and 2d Liouville conformal field theory. We study generalizations of these relations to 4d theories with surface operators. For one type of surfa
We compute the prepotential for gauge theories descending from ${cal N}=4$ SYM via quiver projections and mass deformations. This accounts for gauge theories with product gauge groups and bifundamental matter. The case of massive orientifold gauge
We develop a classification of emph{minimally unbalanced} $3d~mathcal{N}=4$ quiver gauge theories. These gauge theories are important because the isometry group $G$ of their Coulomb branch contains a single factor, which is either a classical or an e
We study half-BPS surface operators in 5d N=1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that govern
Magnetic quivers and Hasse diagrams for Higgs branches of rank $r$ 4d $mathcal{N}=2$ SCFTs arising from $mathbb{Z}_{ell}$ $mathcal{S}$-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues li