ﻻ يوجد ملخص باللغة العربية
The Pulsar Search Collaboratory (PSC) engages high school students and teachers in analyzing real data from the Robert C. Byrd Green Bank Telescope for the purpose of discovering exotic stars called pulsars. These cosmic clocks can be used as a galactic-scale detector of gravitational waves, ripples in space-time that have recently been directly detected from the mergers of stellar-mass black holes. Through immersing students in an authentic, positive learning environment to build a sense of belonging and competency, the goal of the PSC is to promote students long-term interests in science and science careers. PSC students have discovered 7 pulsars since the start of the PSC in 2008. Originally targeted at teachers and students in West Virginia, over time the program has grown to 18 states. In a new effort to scale the PSC nationally, the PSC has developed an integrated online training program with both self-guided lectures and homework and real-time interactions with pulsar astronomers. Now, any high school student can join in the exciting search for pulsars and the discovery of a new type of gravitational waves.
We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory (PSC), a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to exci
We developed a pulsar search pipeline based on PRESTO (PulsaR Exploration and Search Toolkit). This pipeline simply runs dedispersion, FFT (Fast Fourier Transformation), and acceleration search in process-level parallel to shorten the processing time
A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of on
We have constructed a new timescale, TT(IPTA16), based on observations of radio pulsars presented in the first data release from the International Pulsar Timing Array (IPTA). We used two analysis techniques with independent estimates of the noise mod
The SKA will be transformational for many areas of science, but in particular for the study of neutron stars and their usage as tools for fundamental physics in the form of radio pulsars. Since the last science case for the SKA, numerous and unexpect