ﻻ يوجد ملخص باللغة العربية
We study inflation with the Dirac-Born-Infeld (DBI) noncanonical scalar field in both the cold and warm scenarios. We consider the Anti-de Sitter warp factor $f(phi)=f_{0}/phi^{4}$ for the DBI inflation and check viability of the quartic potential $V(phi)=lambdaphi^{4}/4$ in light of the Planck 2015 observational results. In the cold DBI setting, we find that the prediction of this potential in the $r-n_s$ plane is in conflict with Planck 2015 TT,TE,EE+lowP data. This motivates us to focus on the warm DBI inflation with constant sound speed. We conclude that in contrary to the case of cold scenario, the $r-n_s$ result of warm DBI model can be compatible with the 68% CL constraints of Planck 2015 TT,TE,EE+lowP data in the intermediate and high dissipation regimes, whereas it fails to be observationally viable in the weak dissipation regime. Also, the prediction of this model for the running of the scalar spectral index $dn_s/dln k$ is in good agreement with the constraint of Planck 2015 TT,TE,EE+lowP data. Finally, we show that the warm DBI inflation can provide a reasonable solution to the swampland conjecture that challenges the de Sitter limit in the standard inflation.
Within the framework of DBI non-canonical scalar field model of dark energy, we study the growth of dark matter perturbations in the both linear and non-linear regimes. In our DBI model, we consider the anti-de Sitter warp factor $f(phi)=f_0, phi^{-4
In this paper, we study the impact of non-trivial sound on the evolution of cosmological complexity in inflationary period. The vacuum state of curvature perturbation could be treated as squeezed states with two modes, characterized by the two most e
We investigate warm inflationary scenario in which the accelerated expansion of the early Universe is driven by chameleon-like scalar fields. Due to the non-minimal coupling between the scalar field and the matter sector, the energy-momentum tensor o
A characteristic of D-brane inflation is that fluctuations in the inflaton field can propagate at a speed significantly less than the speed of light. This yields observable effects that are distinct from those of single-field slow roll inflation, suc
The constraints on a general form of the power-law potential and the dissipation coefficient in the framework of warm single field inflation imposed by Planck data will be investigated. {By Considering a quasi-static Universe, besides a slow-roll con