Applications of deep learning to relativistic hydrodynamics


الملخص بالإنكليزية

In this proceeding, we will briefly review our recent progress on implementing deep learning to relativistic hydrodynamics. We will demonstrate that a successfully designed and trained deep neural network, called {tt stacked U-net}, can capture the main features of the non-linear evolution of hydrodynamics, which could also rapidly predict the final profiles for various testing initial conditions.

تحميل البحث