ﻻ يوجد ملخص باللغة العربية
We consider the complexity of the Independent Set Reconfiguration problem under the Token Sliding rule. In this problem we are given two independent sets of a graph and are asked if we can transform one to the other by repeatedly exchanging a vertex that is currently in the set with one of its neighbors, while maintaining the set independent. Our main result is to show that this problem is PSPACE-complete on split graphs (and hence also on chordal graphs), thus resolving an open problem in this area. We then go on to consider the $c$-Colorable Reconfiguration problem under the same rule, where the constraint is now to maintain the set $c$-colorable at all times. As one may expect, a simple modification of our reduction shows that this more general problem is PSPACE-complete for all fixed $cge 1$ on chordal graphs. Somewhat surprisingly, we show that the same cannot be said for split graphs: we give a polynomial time ($n^{O(c)}$) algorithm for all fixed values of $c$, except $c=1$, for which the problem is PSPACE-complete. We complement our algorithm with a lower bound showing that $c$-Colorable Reconfiguration is W[2]-hard on split graphs parameterized by $c$ and the length of the solution, as well as a tight ETH-based lower bound for both parameters.
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the
We study the Laplacian spectrum of token graphs, also called symmetric powers of graphs. The $k$-token graph $F_k(G)$ of a graph $G$ is the graph whose vertices are the $k$-subsets of vertices from $G$, two of which being adjacent whenever their symm
Suppose that two independent sets $I$ and $J$ of a graph with $vert I vert = vert J vert$ are given, and a token is placed on each vertex in $I$. The Sliding Token problem is to determine whether there exists a sequence of independent sets which tran
We explore clustering problems in the streaming sliding window model in both general metric spaces and Euclidean space. We present the first polylogarithmic space $O(1)$-approximation to the metric $k$-median and metric $k$-means problems in the slid
We study the distinct elements and $ell_p$-heavy hitters problems in the sliding window model, where only the most recent $n$ elements in the data stream form the underlying set. We first introduce the composable histogram, a simple twist on the expo