ﻻ يوجد ملخص باللغة العربية
A new class of high-performance pyrrolidinium cation based ionanofluid electrolytes with higher lithium salt concentration are developed. The electrolytes are formed by dispersing imidazolium ionic liquid functionalized TiO2 nanoparticles in low conducting, 0.6 M lithium salt doped N-alkyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI) ionic liquid (IL) hosted electrolyte. Viscosity, ionic conductivity and thermal properties of these electrolytes are compared with well studied 0.2 M salt doped Pyr14TFSI IL-based electrolyte. The highly crystalline 0.6 M lithium salt dissolved IL-based electrolytes gradually become amorphous with the increasing dispersion of surface functionalized nanoparticles within it. The ionic conductivity of the electrolytes shows unusual viscosity decoupled characteristics and at the 5.0 wt% nanoparticle dispersion it attains a maximum value, higher than that of pure IL host. As compared to pure IL-based electrolytes, the ionanofluid electrolyte also possesses a significantly higher value of lithium ion transference number. The Li/LiMn2O4 cell with the best conducting ionanofluid electrolyte delivers a discharge capacity of about 131 mAh g-1 at 25 degree C at a current density of 24 mA g-1, much higher than that obtained in 0.2 M Li salt dissociated Pyr14TFSI electrolyte (87 mAh g-1). Superior interfacial compatibility between ionanofluid electrolyte and electrodes as indicated by the excellent rate performance with outstanding capacity retention of the cell as compared to pure IL-based analogue, further establish great application potentiality of this optimized newly developed electrolyte for safer LMBs.
A porous electrode resulting from unregulated Li growth is the major cause of the low Coulombic efficiency and potential safety hazards of rechargeable Li metal batteries. Strategies aiming to achieve large granular Li deposits have been extensively
The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphas
Lithium metal batteries are seen as a critical piece towards electrifying aviation. During charging, plating of lithium metal, a critical failure mechanism, has been studied and mitigation strategies have been proposed. For electric aircraft, high di
Electrolyte stability against oxidation is one of the important factors limiting the development of high energy density batteries. HOMO level of solvent molecules has been successfully used for understanding trends in their oxidative stability but as
We present a porous electrode model for lithium-ion batteries using Butler--Volmer reaction kinetics. We model lithium concentration in both the solid and fluid phase along with solid and liquid electric potential. Through asymptotic reduction, we sh