ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A

120   0   0.0 ( 0 )
 نشر من قبل Shantanu Desai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 22nd September 2017, the IceCube Collaboration detected a neutrino with energy of about 290 TeV from the direction of the gamma-ray blazar TXS 0506+056, located at a distance of about 1.75 Gpc. During the same time, enhanced gamma-ray flaring was also simultaneously observed from multiple telescopes, giving rise to only the second coincident astrophysical neutrino/photon observation after SN 1987A. We point out that for this event, both neutrinos and photons encountered a Shapiro delay of about 6300 days along the way from the source. From this delay and the relative time difference between the neutrino and photon arrival times, one can constrain violations of Einsteins Weak Equivalence Principle (WEP) for TeV neutrinos. We constrain such violations of WEP using the Parameterized Post-Newtonian (PPN) parameter $gamma$, which is given by $|gamma_{rm { u}}-gamma_{rm{EM}}|<5.5 times 10^{-2}$, after assuming time difference of 175 days between neutrino and photon arrival times.



قيم البحث

اقرأ أيضاً

On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 e xperienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 100 Hz within a 0.2 second window allows us to constrain any violations of Shapiro delay and Einsteins equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of $mathcal{O}(10^{-9})$
We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited ener gies from $sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 pm 0.3) times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 pm 2.0) times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of the limited deposited energy and the non-observation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and $gamma$-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models.
123 - Fabio Zandanel 2015
Cosmic-ray (CR) protons can accumulate for cosmological times in clusters of galaxies. Their hadronic interactions with protons of the intra-cluster medium (ICM) generate secondary electrons, gamma-rays and high-energy neutrinos. In light of the high -energy neutrino events recently discovered by the IceCube observatory, we estimate the contribution from galaxy clusters to the diffuse gamma-ray and neutrino backgrounds. For the first time, we consistently take into account the synchrotron emission generated by secondary electrons and require the clusters radio counts to be respected. For a choice of parameters respecting current constraints from radio to gamma-rays, and assuming a proton spectral index of -2, we find that hadronic interactions in clusters contribute by less than 10% to the IceCube flux, and much less to the total extragalactic gamma-ray background observed by Fermi. They account for less than 1% for spectral indexes <-2. The high-energy neutrino flux observed by IceCube can be reproduced without violating radio constraints only if a very hard (and speculative) spectral index >-2 is adopted. However, this scenario is in tension with the high-energy IceCube data, which seem to suggest a spectral energy distribution of the neutrino flux that decreases with the particle energy. We stress that our results are valid for all kind of sources injecting CR protons into the ICM, and that, while IceCube can test the most optimistic scenarios for spectral indexes >=-2.2 by stacking few nearby massive objects, clusters of galaxies cannot give any relevant contribution to the extragalactic gamma-ray and neutrino backgrounds in any realistic scenario.
The steep spectrum of neutrinos measured by IceCube extending from >1 PeV down to ~10 TeV has an energy flux now encroaching on the Fermi isotropic GeV background. We examine several implications starting from source energetics requirements for neutr ino production. We show how the environment of extragalactic nuclei can extinguish ~10-100 TeV gamma rays and convert their energy to X-rays for plausible conditions of infrared luminosity and magnetic field, so that the Fermi background is not overwhelmed by cascades. We address a variety of scenarios, such as for acceleration by supermassive black holes and hadronic scenarios, and observations that may help elucidate the neutrinos shadowy origins.
Among the information provided by high energy neutrinos, a promising possibility is to analyze the effects of a Violation of Equivalence Principle (VEP) on neutrino oscillations. We analyze the recently released IceCube data on atmospheric neutrino f luxes under the assumption of a VEP and obtain updated constraints on the parameter space with the benchmark choice that neutrinos with different masses couple with different strengths to the gravitational field. In this case we find that the VEP parameters times the local gravitational potential at Earth can be constrained at the level of $10^{-27}$. We show that the constraints from atmospheric neutrinos strongly depend on the assumption that the neutrino eigenstates interacting diagonally with the gravitational field coincide with the mass eigenstates, which is not textit{a priori} justified: this is particularly clear in the case that the basis of diagonal gravitational interaction coincide with the flavor basis, which cannot be constrained by the observation of atmospheric neutrinos. Finally, we quantitatively study the effect of a VEP on the flavor composition of the astrophysical neutrinos, stressing again the interplay with the basis in which the VEP is diagonal: we find that for some choices of such basis the flavor ratio measured by IceCube can significantly change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا