ﻻ يوجد ملخص باللغة العربية
Given a weighted graph $G=(V,E)$ with weight functions $c:Eto mathbb{R}_+$ and $pi:Vto mathbb{R}_+$, and a subset $Usubseteq V$, the normalized cut value for $U$ is defined as the sum of the weights of edges exiting $U$ divided by the weight of vertices in $U$. The {it mean isoperimetry problem}, $mathsf{ISO}^1(G,k)$, for a weighted graph $G$ is a generalization of the classical uniform sparsest cut problem in which, given a parameter $k$, the objective is to find $k$ disjoint nonempty subsets of $V$ minimizing the average normalized cut value of the parts. The robust version of the problem seeks an optimizer where the number of vertices that fall out of the subpartition is bounded by some given integer $0 leq rho leq |V|$. Our main result states that $mathsf{ISO}^1(G,k)$, as well as its robust version, $mathsf{CRISO}^1(G,k,rho)$, subjected to the condition that each part of the subpartition induces a connected subgraph, are solvable in time $O(k^2 rho^2 pi(V(T)^3)$ on any weighted tree $T$, in which $pi(V(T))$ is the sum of the vertex-weights. This result implies that $mathsf{ISO}^1(G,k)$ is strongly polynomial-time solvable on weighted trees when the vertex-weights are polynomially bounded and may be compared to the fact that the problem is NP-Hard for weighted trees in general. Also, using this, we show that both mentioned problems, $mathsf{ISO}^1(G,k)$ and $mathsf{CRISO}^1(G,k,rho)$ as well as the ordinary robust mean isoperimetry problem $mathsf{RISO}^1(G,k,rho)$, admit polynomial-time $O(log^{1.5}|V| loglog |V|)$-approximation algorithms for weighted graphs with polynomially bounded weights, using the R{a}cke-Shah tree cut sparsifier.
We study the problem of robustly estimating the mean of a $d$-dimensional distribution given $N$ examples, where most coordinates of every example may be missing and $varepsilon N$ examples may be arbitrarily corrupted. Assuming each coordinate appea
Given a graph, the sparsest cut problem asks for a subset of vertices whose edge expansion (the normalized cut given by the subset) is minimized. In this paper, we study a generalization of this problem seeking for $ k $ disjoint subsets of vertices
The subspace approximation problem with outliers, for given $n$ points in $d$ dimensions $x_{1},ldots, x_{n} in R^{d}$, an integer $1 leq k leq d$, and an outlier parameter $0 leq alpha leq 1$, is to find a $k$-dimensional linear subspace of $R^{d}$
The Steiner Tree problem is a classical problem in combinatorial optimization: the goal is to connect a set $T$ of terminals in a graph $G$ by a tree of minimum size. Karpinski and Zelikovsky (1996) studied the $delta$-dense version of {sc Steiner Tr
The maximum independent set problem is one of the most important problems in graph algorithms and has been extensively studied in the line of research on the worst-case analysis of exact algorithms for NP-hard problems. In the weighted version, each