ﻻ يوجد ملخص باللغة العربية
In this work we study the interactions of bottom mesons which lead to $Upsilon$ production and absorption in hot hadronic matter. We use effective Lagrangians to calculate the $Upsilon$ production cross section in processes such as $ bar{B}^{(*)} + B^{(*)} to Upsilon + (pi, rho)$ and also the $Upsilon$ absorption cross section in the corresponding inverse processes. We update and extend previous calculations by Lin and Ko, introducing anomalous interactions. The obtained cross sections are used as input to solve the rate equation which allows us to follow the time evolution of the $Upsilon$ multiplicity. In contrast to previous conjectures, our results suggest that the interactions in the hadron gas phase strongly reduce the $Upsilon$ abundance.
The shear viscosity $eta$ in the van der Waals excluded volume hadron-resonance gas model is considered. For the shear viscosity the result of the non-relativistic gas of hard-core particles is extended to the mixture of particles with different mass
The suppression of high momentum particles in heavy-ion collisions in comparison to elementary reactions is one of the main indications for the formation of a quark-gluon plasma. In recent studies, full jets are being reconstructed and substructure o
An intense transient magnetic field is produced in high energy heavy-ion collisions mostly due to the spectator protons inside the two colliding nucleus. The magnetic field introduces anisotropy in the medium and hence the isotropic scalar transport
We simultaneously incorporate two common extensions of the hadron resonance gas model, namely the addition of extra, unconfirmed resonances to the particle list and the excluded volume repulsive interactions. We emphasize the complementary nature of
We report a new determination of $hat{q}$, the jet transport coefficient of the Quark-Gluon Plasma. We use the JETSCAPE framework, which incorporates a novel multi-stage theoretical approach to in-medium jet evolution and Bayesian inference for param