ﻻ يوجد ملخص باللغة العربية
Let $C$ be an arithmetic circuit of $poly(n)$ size given as input that computes a polynomial $finmathbb{F}[X]$, where $X={x_1,x_2,ldots,x_n}$ and $mathbb{F}$ is any field where the field arithmetic can be performed efficiently. We obtain new algorithms for the following two problems first studied by Koutis and Williams cite{Kou08, Wi09, KW16}. k-MLC: Compute the sum of the coefficients of all degree-$k$ multilinear monomials in the polynomial $f$. k-MMD: Test if there is a nonzero degree-$k$ multilinear monomial in the polynomial $f$. Our algorithms are based on the fact that the Hadamard product $fcirc S_{n,k}$, is the degree-$k$ multilinear part of $f$, where $S_{n,k}$ is the $k^{th}$ elementary symmetric polynomial. 1. For k-MLC problem, we give a deterministic algorithm of run time $O^*(n^{k/2+clog k})$ (where $c$ is a constant), answering an open question of Koutis and Williams cite[ICALP09]{KW16}. As corollaries, we show $O^*(binom{n}{downarrow k/2})$-time exact counting algorithms for several combinatorial problems: k-Tree, t-Dominating Set, m-Dimensional k-Matching. 2. For k-MMD problem, we give a randomized algorithm of run time $4.32^kcdot poly(n,k)$. Our algorithm uses only $poly(n,k)$ space. This matches the run time of a recent algorithm cite{BDH18} for $k-MMD$ which requires exponential (in $k$) space. Other results include fast deterministic algorithms for k-MLC and k-MMD problems for depth three circuits.
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for
The wide applicability of kernels makes the problem of max-kernel search ubiquitous and more general than the usual similarity search in metric spaces. We focus on solving this problem efficiently. We begin by characterizing the inherent hardness of
We consider the problem of computing the rank of an m x n matrix A over a field. We present a randomized algorithm to find a set of r = rank(A) linearly independent columns in ~O(|A| + r^omega) field operations, where |A| denotes the number of nonzer
We discuss the analytic continuation of the Hadamard product of two holomorphic functions under assumptions pertaining to Ecalles Resurgence Theory, proving that if both factors are endlessly continuable with prescribed sets of singular points $A$ an
We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our first main results are average-case algorithms for these problems. For example, we develop an algorithm that takes two cubic forms $f, gin mathbb{F}_q[x