ﻻ يوجد ملخص باللغة العربية
The early Universe presented a star formation environment that was almost devoid of heavy elements. The lowest metallicity stars thus provide a unique window into the earliest Galactic stages, but are exceedingly rare and difficult to find. Here we present the discovery of an ultra-metal-poor star, Pristine_221.8781+9.7844, using narrow-band Ca H&K photometry from the Pristine survey. Follow-up medium and high-resolution spectroscopy confirms the ultra-metal-poor nature of Pristine_221.8781+9.7844 ([Fe/H] = -4.66 +/- 0.13 in 1D LTE) with an enhancement of 0.3-0.4 dex in alpha-elements relative to Fe, and an unusually low carbon abundance. We derive an upper limit of A(C) = 5.6, well below typical A(C) values for such ultra metal-poor stars. This makes Pristine_221.8781+9.7844 one of the most metal-poor stars; in fact, it is very similar to the most metal-poor star known (SDSS J102915+172927). The existence of a class of ultra metal-poor stars with low(er) carbon abundances suggest that there must have been several formation channels in the early Universe through which long-lived, low-mass stars were formed.
It is unknown whether or not low-mass stars can form at low metallicity. While theoretical simulations of Population III (Pop III) star formation show that protostellar disks can fragment, it is impossible for those simulations to discern if those fr
Context. The most primitive metal-poor stars are important for studying the conditions of the early galaxy and are also relevant to big bang nucleosynthesis. Aims. Our objective is to find the brightest (V<14) most metal-poor stars. Methods. Candidat
We report on the discovery of SPLUS J210428.01-004934.2, an ultra metal-poor (UMP) star first identified from the narrow-band photometry of the Southern Photometric Local Universe Survey (S-PLUS) Data Release 1, in the SDSS Stripe 82 region. Follow-u
A new moderately r-process-enhanced metal-poor star, RAVE J093730.5-062655, has been identified in the Milky Way halo as part of an ongoing survey by the R-Process Alliance. The temperature and surface gravity indicate that J0937-0626 is likely a hor
We present the first results of the EMBLA survey (Extremely Metal-poor BuLge stars with AAOmega), aimed at finding metal-poor stars in the Milky Way bulge, where the oldest stars should now preferentially reside. EMBLA utilises SkyMapper photometry t