ﻻ يوجد ملخص باللغة العربية
We present a systematic study of the cosmic variance that existed in the formation of first stars and galaxies. We focus on the cosmic variance induced by the large-scale density and velocity environment engraved at the epoch of recombination. The density environment is predominantly determined by the dark-matter overdensity, and the velocity environment by the dark matter-baryon streaming velocity. Toward this end, we introduce a new cosmological initial condition generator BCCOMICS, which solves the quasi-linear evolution of small-scale perturbations under the large-scale density and streaming-velocity environment and generates the initial condition for dark matter and baryons, as either particles or grid data at a specific redshift. We also describe a scheme to simulate the formation of first galaxies inside density peaks and voids, where a local environment is treated as a separate universe. The resulting cosmic variance in the minihalo number density and the amount of cooling mass are presented as an application. Density peaks become a site for enhanced formation of first galaxies, which compete with the negative effect from the dark matter-baryon streaming velocity on structure formation.
The impact of the streaming between baryons and dark matter on the first structures has been actively explored by recent studies. We investigate how the key results are affected by two popular approximations. One is to implement the streaming by acco
At cosmic recombination, there was supersonic relative motion between baryons and dark matter, which originated from the baryonic acoustic oscillations in the early universe. This motion has been considered to have a negligible impact on the late sta
The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as $rho propto r^{-(1.5-1.3)}$. We present results of very lar
We study the evolution of the cross-correlation between voids and the mass density field - i.e. of void profiles. We show that approaches based on the spherical model alone miss an important contribution to the evolution on large scales of most inter
We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of