ﻻ يوجد ملخص باللغة العربية
We propose a new bound on the average null energy along a finite portion of a null geodesic. We believe our bound is valid on scales small compared to the radius of curvature in any quantum field theory that is consistently coupled to gravity. If correct, our bound implies that regions of negative energy density are never strongly gravitating, and that isolated regions of negative energy are forbidden.
The classic singularity theorems of General Relativity rely on energy conditions that can be violated in semiclassical gravity. Here, we provide motivation for an energy condition obeyed by semiclassical gravity: the smeared null energy condition (SN
We study whether a violation of the null energy condition necessarily implies the presence of instabilities. We prove that this is the case in a large class of situations, including isotropic solids and fluids relevant for cosmology. On the other han
We explore the implications of the averaged null energy condition for thermal states of relativistic quantum field theories. A key property of such thermal states is the thermalization length. This lengthscale generalizes the notion of a mean free pa
We analyze four-dimensional Friedmann-Lemaitre-Robertson-Walker cosmologies in type IIB, arising from a M-theory dual, and find that the null energy condition (NEC) has to be obeyed by them (except for the negatively curved case) in order for the M-t
We study violations of the Null Energy Condition (NEC) in Quantum Field Theory (QFT) and their implications. For the first part of the project, we examine these violations for classes of already known and novel (first discussed here) QFT states. Next