ﻻ يوجد ملخص باللغة العربية
With the recent advent of multi-messenger gravitational-wave astronomy and in anticipation of more sensitive, next-generation gravitational-wave detectors, we investigate the dynamics, gravitational-wave emission, and nucleosynthetic yields of numerous eccentric binary neutron-star mergers having different equations of state. For each equation of state we vary the orbital properties around the threshold of immediate merger, as well as the binary mass ratio. In addition to a study of the gravitational-wave emission including $f$-mode oscillations before and after merger, we couple the dynamical ejecta output from the simulations to the nuclear-reaction network code texttt{SkyNet} to compute nucleosynthetic yields and compare to the corresponding results in the case of a quasi-circular merger. We find that the amount and velocity of dynamically ejected material is always much larger than in the quasi-circular case, reaching maximal values of $M_{rm ej, max} sim 0.1 , M_{odot}$ and $v_{rm max}/c sim 0.75$. At the same time, the properties of this material are rather insensitive to the details of the orbit, such as pericenter distance or post-encounter apoastron distance. Furthermore, while the composition of the ejected matter depends on the orbital parameters and on the equation of state, the relative nucleosynthetic yields do not, thus indicating that kilonova signatures could provide information on the orbital properties of dynamically captured neutron-star binaries.
As current gravitational wave (GW) detectors increase in sensitivity, and particularly as new instruments are being planned, there is the possibility that ground-based GW detectors will observe GWs from highly eccentric neutron star binaries. We pres
We continue our study of the binary neutron star parameter space by investigating the effect of the spin orientation on the dynamics, gravitational wave emission, and mass ejection during the binary neutron star coalescence. We simulate seven differe
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realist
Massive-star binaries can undergo a phase where one of the two stars expands during its advanced evolutionary stage as a giant and envelops its companion, ejecting the hydrogen envelope and tightening its orbit. Such a common envelope phase is requir
We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different