ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic trajectory recognition in Active Target Time Projection Chambers data by means of hierarchical clustering

69   0   0.0 ( 0 )
 نشر من قبل Christoph Dalitz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The automatic reconstruction of three-dimensional particle tracks from Active Target Time Projection Chambers data can be a challenging task, especially in the presence of noise. In this article, we propose a non-parametric algorithm that is based on the idea of clustering point triplets instead of the original points. We define an appropriate distance measure on point triplets and then apply a single-link hierarchical clustering on the triplets. Compared to parametric approaches like RANSAC or the Hough transform, the new algorithm has the advantage of potentially finding trajectories even of shapes that are not known beforehand. This feature is particularly important in low-energy nuclear physics experiments with Active Targets operating inside a magnetic field. The algorithm has been validated using data from experiments performed with the Active Target Time Projection Chamber developed at the National Superconducting Cyclotron Laboratory (NSCL).The results demonstrate the capability of the algorithm to identify and isolate particle tracks that describe non-analytical trajectories. For curved tracks, the vertex detection recall was 86% and the precision 94%. For straight tracks, the vertex detection recall was 96% and the precision 98%. In the case of a test set containing only straight linear tracks, the algorithm performed better than an iterative Hough transform.



قيم البحث

اقرأ أيضاً

Active-target detectors have the potential to address the difficulties associated with the low intensities of radioactive beams. We have developed an active-target detector, the Notre Dame Cube (ND-Cube), to perform experiments with radioactive beams produced at $mathit{TwinSol}$ and to aid in the development of active-target techniques. Various aspects of the ND-Cube and its design were characterized. The ND-Cube was commissioned with a $^{7}$Li beam for measuring $^{40}$Ar + $^{7}$Li fusion reaction cross sections and investigating $^{7}$Li($alpha$,$alpha$)$^{7}$Li scattering events. The ND-Cube will be used to study a range of reactions using light radioactive ions produced at low energy.
Tracking capabilities in Time Projection Chambers (TPCs) are strongly dictated by the homogeneity of the drift field. Ion back-flow in various gas detectors, mainly induced by the secondary ionization processes during amplification, has long been kno wn as a source of drift field distortion. Here, we report on beam-induced space-charge effects from the primary ionization process in the drift region in low-energy nuclear physics experiment with Active Target Time Projection Chamber (AT-TPC). A qualitative explanation of the observed effects is provided using detailed electron transport simulations. As ion mobility is a crucial factor in the space-charge effects, the need for a careful optimization of gas properties is highlighted. The impact of track distortion on tracking algorithm performance is also discussed.
Using truth-level Monte Carlo simulations of particle interactions in a large volume of liquid argon, we demonstrate physics capabilities enabled by reconstruction of topologically compact and isolated low-energy features, or `blips, in large liquid argon time projection chamber (LArTPC) events. These features are mostly produced by electron products of photon interactions depositing ionization energy. The blip identification capability of the LArTPC is enabled by its unique combination of size, position resolution precision, and low energy thresholds. We show that consideration of reconstructed blips in LArTPC physics analyses can result in substantial improvements in calorimetry for neutrino and new physics interactions and for final-state particles ranging in energy from the MeV to the GeV scale. Blip activity analysis is also shown to enable discrimination between interaction channels and final-state particle types. In addition to demonstrating these gains in calorimetry and discrimination, some limitations of blip reconstruction capabilities and physics outcomes are also discussed.
We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclear recoil energy of $sim$100 keV, we observe an electronic recoil background acceptance of $<10^{-5}$ at a nuclear recoil signal acceptance of 50%. We also observe modest electric field dependence of the discrimination power, which peaks at a field of around 300 V/cm over the range of fields explored in this study (50-500 V/cm). In the WIMP search region of S1 = 1-80 phd, the minimum electronic recoil leakage we observe is ${(7.3pm0.6)times10^{-4}}$, which is obtained for a drift field of 240-290 V/cm. Pulse shape discrimination is utilized to improve our results, and we find that, at low energies and low fields, there is an additional reduction in background leakage by a factor of up to 3. We develop an empirical model for recombination fluctuations which, when used alongside the Noble Element Scintillation Technique (NEST) simulation package, correctly reproduces the skewness of the electronic recoil data. We use this updated simulation to study the width of the electronic recoil band, finding that its dominant contribution comes from electron-ion recombination fluctuations, followed in magnitude of contribution by fluctuations in the S1 signal, fluctuations in the S2 signal, and fluctuations in the total number of quanta produced for a given energy deposition.
Directional detection of nuclear recoils is appealing because it can confirm the cosmological origin of a dark matter signal and distinguish between different neutrino sources. Gas Time Projection Chambers (TPCs) enable directional recoil detection d ue to the high spatial granularity with which they can image a recoils ionization track, especially if micro-pattern gaseous detectors (MPGDs) are utilized. A key challenge in these detectors at low energies is identifying and rejecting background electron recoil events cause by gamma rays from radioactive contaminants in the detector materials and the environment. For gas TPCs with high readout segmentation, we can define observables that can distinguish electron and nuclear recoils, even at keV-scale energies, based on the measured ionizations topology. We define such observables and show that they outperform the traditionally used discriminant, dE/dx, by up to three orders of magnitude. Furthermore, these new observables work well even at ionization energies below 10 keV and remain robust even in the regime where directionality fails.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا