ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrally Resolved Mid-Infrared Molecular Emission from Protoplanetary Disks and the Chemical Fingerprint of Planetesimal Formation

359   0   0.0 ( 0 )
 نشر من قبل Joan Najita
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution spectroscopy of mid-infrared molecular emission from two very active T Tauri stars, AS 205 N and DR Tau. In addition to measuring high signal-to-noise line profiles of water, we report the first spectrally resolved mid-infrared line profiles of HCN emission from protoplanetary disks. The similar line profiles and temperatures of the HCN and water emission indicate that they arise in the same volume of the disk atmosphere, within 1-2AU of the star. The results support the earlier suggestion that the observed trend of increasing HCN/water emission with disk mass is a chemical fingerprint of planetesimal formation and core accretion in action. In addition to directly constraining the emitting radii of the molecules, the high resolution spectra also help to break degeneracies between temperature and column density in deriving molecular abundances from low resolution mid-infrared spectra. As a result, they can improve our understanding of the extent to which inner disks are chemically active. Contrary to predictions from HCN excitation studies carried out for AS 205 N, the mid-infrared and near-infrared line profiles of HCN are remarkably similar. The discrepancy may indicate that HCN is not abundant beyond a couple of AU or that infrared pumping of HCN does not dominate at these distances.



قيم البحث

اقرأ أيضاً

We present an analysis of Spitzer-IRS observations of H2O, OH, HCN, C2H2, and CO2 emission, and Keck-NIRSPEC observations of CO emission, from a diverse sample of T Tauri and Herbig Ae/Be circumstellar disks. We find that detections and strengths of most mid-IR molecular emission features are correlated with each other, suggesting a common origin and similar excitation conditions. We note that the line detection efficiency is anti-correlated with the 13/30 um SED spectral slope, which is a measure of the degree of grain settling in the disk atmosphere. We also note a correlation between detection efficiency and H-alpha equivalent width, and tentatively with accretion rate, suggesting that accretional heating contributes to line excitation. If detected, H2O line fluxes are correlated with the mid-IR continuum flux, and other co-varying system parameters, such as L_star. However, significant sample variation, especially in molecular line ratios, remains. LTE models of the H2O emission show that line strength is primarily related to the best-fit emitting area, and this accounts for most source-to-source variation in H2O emitted flux. Best-fit temperatures and column densities cover only a small range of parameter space, near 10^{18} cm-2 and 450 K for all sources, suggesting a high abundance of H2O in many planet-forming regions. Other molecules have a range of excitation temperatures from ~500-1500 K, also consistent with an origin in planet-forming regions. We find molecular ratios relative to water of ~10^{-3} for all molecules, with the exception of CO, for which n(CO)/n(H2O)~1. However, LTE fitting caveats and differences in the way thermo-chemical modeling results are reported make comparisons with such models difficult, and highlight the need for additional observations coupled with the use of line-generating radiative transfer codes.
We present the largest survey of spectrally resolved mid-infrared water emission to date, with spectra for 11 disks obtained with the Michelle and TEXES spectrographs on Gemini North. Water emission is detected in 6 of 8 disks around classical T Taur i stars. Water emission is not detected in the transitional disks SR 24 N and SR 24 S, in spite of SR 24 S having pre-transitional disk properties like DoAr 44, which does show water emission (Salyk et al. 2015). With R~100,000, the TEXES water spectra have the highest spectral resolution possible at this time, and allow for detailed lineshape analysis. We find that the mid-IR water emission lines are similar to the narrow component in CO rovibrational emission (Banzatti & Pontoppidan 2015), consistent with disk radii of a few AU. The emission lines are either single peaked, or consistent with a double peak. Single-peaked emission lines cannot be produced with a Keplerian disk model, and may suggest that water participates in the disk winds proposed to explain single-peaked CO emission lines (Bast et al. 2011, Pontoppidan et al. 2011). Double-peaked emission lines can be used to determine the radius at which the line emission luminosity drops off. For HL Tau, the lower limit on this measured dropoff radius is consistent with the 13 AU dark ring (ALMA partnership et al. 2015). We also report variable line/continuum ratios from the disks around DR Tau and RW Aur, which we attribute to continuum changes and line flux changes, respectively. The reduction in RW Aur line flux corresponds with an observed dimming at visible wavelengths (Rodriguez et al. 2013).
204 - A. Carmona 2007
We observed the Herbig Ae/Be stars UX Ori, HD 34282, HD 100453, HD 101412, HD 104237 and HD 142666, and the T Tauri star HD 319139 and searched for H2 0-0 S(2) emission at 12.278 micron and H2 0-0 S(1) emission at 17.035 micron with VISIR, ESO-VLTs h igh-resolution MIR spectrograph. None of the sources present evidence for H2 emission. Stringent 3sigma upper limits to the integrated line fluxes and the mass of optically thin warm gas in the disks are derived. The disks contain less than a few tenths of Jupiter mass of optically thin H2 gas at 150 K at most, and less than a few Earth masses of optically thin H2 gas at 300 K and higher temperatures. We compare our results to a Chiang and Goldreich (1997, CG97) two-layer disk model. The upper limits to the disks optically thin warm gas mass are smaller than the amount of warm gas in the interior layer of the disk, but they are much larger than the amount of molecular gas in the surface layer. We present a calculation of the expected thermal H2 emission from optically thick disks, assuming a CG97 disk structure, a gas-to-dust ratio of 100 and Tgas = Tdust. The expected H2 thermal emission fluxes from typical disks around Herbig Ae/Be stars (10^-16 to 10^-17 erg/s/cm2 at 140 pc) are much lower than the detection limits of our observations (5*10^-15 erg/s/cm2). H2 emission levels are very sensitive to departures from the thermal coupling between the molecular gas and dust. Additional sources of heating of gas in the disks surface layer could have a major impact on the expected H2 disk emission. In the observed sources the molecular gas and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust< 2) and that the gas-to-dust ratio in the surface layer is very likely lower than 1000.
We introduce a new stacking method in Keplerian disks that (1) enhances signal-to-noise ratios (S/N) of detected molecular lines and (2) that makes visible otherwise undetectable weak lines. Our technique takes advantage of the Keplerian rotational v elocity pattern. It aligns spectra according to their different centroid velocities at their different positions in a disk and stacks them. After aligning, the signals are accumulated in a narrower velocity range as compared to the original line width without alignment. Moreover, originally correlated noise becomes de-correlated. Stacked and aligned spectra, thus, have a higher S/N. We apply our method to ALMA archival data of DCN (3-2), DCO+ (3-2), N2D+ (3-2), and H2CO (3_0,3-2_0,2), (3_2,2-2_2,1), and (3_2,1-2_2,0) in the protoplanetary disk around HD 163296. As a result, (1) the S/N of the originally detected DCN (3-2), DCO+ (3-2), and H2CO (3_0,3-2_0,2) and N2D+ (3-2) lines are boosted by a factor of >4-5 at their spectral peaks, implying one order of magnitude shorter integration times to reach the original S/N; and (2) the previously undetectable spectra of the H2CO (3_2,2-2_2,1) and (3_2,1-2_2,0) lines are materialized at more than 3 sigma. These dramatically enhanced S/N allow us to measure intensity distributions in all lines with high significance. The principle of our method can not only be applied to Keplerian disks but also to any systems with ordered kinematic patterns.
Protoplanetary disks around young stars are the sites of planet formation. While the dust mass can be estimated using standard methods, determining the gas mass - and thus the amount of material available to form giant planets - has proven to be very difficult. Hydrogen deuteride (HD) is a promising alternative to the commonly-used gas mass tracer, CO. We aim to examine the robustness of HD as tracer of the disk gas mass, specifically the effect of gas mass on the HD FIR emission and its sensitivity to the vertical structure. Deuterium chemistry reactions relevant for HD were implemented in the thermochemical code DALI and models were run for a range of disk masses and vertical structures. The HD J=1-0 line intensity depends directly on the gas mass through a sublinear power law relation with a slope of ~0.8. Assuming no prior knowledge about the vertical structure of a disk and using only the HD 1-0 flux, gas masses can be estimated to within a factor of 2 for low mass disks (M$_{rm disk} < 10^{-3}$ M$_odot$). For more massive disks, this uncertainty increases to more than an order of magnitude. Adding the HD 2-1 line or independent information about the vertical structure can reduce this uncertainty to a factor of ~3 for all disk masses. For TW Hya, using the radial and vertical structure from Kama et al. 2016b the observations constrain the gas mass to $6cdot10^{-3}$ M$_odot$ < M$_{rm disk} < 9cdot10^{-3}$ M$_odot$. Future observations require a 5$sigma$ sensitivity of $1.8cdot10^{-20}$ W m$^{-2}$ ($2.5cdot10^{-20}$ W m$^{-2}$) and a spectral resolving power R > 300 (1000) to detect HD 1-0 (HD 2-1) for all disk masses above $10^{-5}$ M$_odot$ with a line-to-continuum ratio > 0.01. These results show that HD can be used as an independent gas mass tracer with a relatively low uncertainty and should be considered as an important science goal for future FIR missions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا