ترغب بنشر مسار تعليمي؟ اضغط هنا

A Posteriori Error Analysis of Fluid-Stucture Interactions: Time Dependent Error

227   0   0.0 ( 0 )
 نشر من قبل Jay Stotsky
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A posteriori error analysis is a technique to quantify the error in particular simulations of a numerical approximation method. In this article, we use such an approach to analyze how various error components propagate in certain moving boundary problems. We study quasi-steady state simulations where slowly moving boundaries remain in mechanical equilibrium with a surrounding fluid. Such problems can be numerically approximated with the Method of Regularized Stokelets(MRS), a popular method used for studying viscous fluid-structure interactions, especially in biological applications. Our approach to monitoring the regularization error of the MRS is novel, along with the derivation of linearized adjoint equations to the governing equations of the MRS with a elastic elements. Our main numerical results provide a clear illustration of how the error evolves over time in several MRS simulations.



قيم البحث

اقرأ أيضاً

We present a residual-based a posteriori error estimator for the hybrid high-order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation o rders on fairly general meshes. The upper bound and lower bound of the error estimator are proved, in which proof, the key ingredient is a novel stabilizer employed in the discrete scheme. By using the given estimator, adaptive algorithm of HHO method is designed to solve model problem. Finally, the expected theoretical results are numerically demonstrated on a variety of meshes for model problem.
215 - K. Mitra , M. Vohralik 2021
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli c-hyperbolic and parabolic-elliptic kinds of degeneracies. In this study, we provide reliable, fully computable, and locally space-time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space-time efficiency error bounds are then obtained in a standard $H^1(H^{-1})cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as flux nonconformity, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.
This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold fo r a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.
The focus of this work is a posteriori error estimation for stochastic Galerkin approximations of parameter-dependent linear elasticity equations. The starting point is a three-field PDE model in which the Youngs modulus is an affine function of a co untable set of parameters. We analyse the weak formulation, its stability with respect to a weighted norm and discuss approximation using stochastic Galerkin mixed finite element methods (SG-MFEMs). We introduce a novel a posteriori error estimation scheme and establish upper and lower bounds for the SG-MFEM error. The constants in the bounds are independent of the Poisson ratio as well as the SG-MFEM discretisation parameters. In addition, we discuss proxies for the error reduction associated with certain enrichments of the SG-MFEM spaces and we use these to develop an adaptive algorithm that terminates when the estimated error falls below a user-prescribed tolerance. We prove that both the a posteriori error estimate and the error reduction proxies are reliable and efficient in the incompressible limit case. Numerical results are presented to validate the theory. All experiments were performed using open source (IFISS) software that is available online.
We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a non-conforming d omain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasi-reliability and efficiency of the error estimator in comparison with the error in a natural (non-conforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا