ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass modelling of a superthin galaxy, FGC1540

83   0   0.0 ( 0 )
 نشر من قبل Sushma Kurapati
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution H{sc i} 21cm Giant Meterwave Radio Telescope (GMRT) observations of the superthin galaxy FGC1540 with a spatial resolution of 10$$ $times$ 8$$ and a spectral resolution of 1.73 kms$^{-1}$ and an rms noise of 0.9 mJy per beam. We obtain its rotation curve as well as deprojected radial H{sc i} surface density profile by fitting a 3-dimensional tilted ring model directly to the H{sc i} data cubes by using the publicly-available software, Fully Automated Tirrific (FAT). We also present the rotation curve of FGC1540 derived from its optical spectroscopy study using the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We use the rotation curve, the H{sc i} surface density profile together with Spitzer 3.6 $mu$m and the SDSS $i$--band data to construct the mass models for FGC1540. We find that both the Pseudo-isothermal (PIS), as well as Navarro-Frenk-White (NFW) dark matter (DM) halos, fit the observed rotation curve equally well. The PIS model indicates a compact dark matter halo ($R_{rm C}/R_{rm D}$ < 2), with the best-fitting core radius ($R_{rm C}$) approximately half the exponential stellar disc scale length ($R_{rm D}$), which is in agreement with the mass models of superthin galaxies studied earlier in the literature. Since the vertical thickness of the galactic stellar disc is determined by a balance between the net gravitational field and the velocity dispersion in the vertical direction, the compact dark matter halo may be primarily responsible in regulating the superthin vertical structure of the stellar disc in FGC1540 as was found in case of the superthin galaxy UGC7321.



قيم البحث

اقرأ أيضاً

Studies of the stellar and the HI gas kinematics in dwarf and Low Surface Brightness (LSB) galaxies are essential for deriving constraints on their dark matter distribution. Moreover, a key component to unveil in the evolution of LSBs is why some of them can be classified as superthin. We aim to investigate the nature of the proto-typical superthin galaxy Fourcade-Figueroa (FF), to understand the role played by the dark matter halo in forming its superthin shape and to investigate the mechanism that explains the observed disruption in the approaching side of the galaxy. Combining new HI 21-cm observations obtained with the Giant Metrewave Radio Telescope with archival data from the Australia Telescope Compact Array we were able to obtain sensitive HI observations of the FF galaxy. These data were modeled with a 3D tilted ring model in order to derive the rotation curve and surface brightness density of the neutral hydrogen. We subsequently used this model, combined with a stellar profile from the literature, to derive the radial distribution of the dark matter in the FF galaxy. For the FF galaxy the Navarro-Frenk-White dark matter distribution provides the best fit to the observed rotation curve. However, the differences with a pseudo-isothermal halo are small. Both models indicate that the core of the dark matter halo is compact. Even though the FF galaxy classifies as superthin, the gas thickness about the galactic centre exhibits a steep flaring of the gas which is in agreement with the edge of the stellar disk. As suggested previously in the literature, the compact dark matter halo might be the main responsible for the superthin structure of the stellar disk in FF. This idea is strengthened through the detection of the mentioned disruption; the fact that the galaxy is disturbed also seems to support the idea that it is not isolation that cause its superthin structure.
We conduct spectral observations of 138 superthin galaxies (STGs) with high radial-to-vertical stellar disk scales ratio with the Dual Imaging Spectrograph (DIS) on the 3.5m telescope at the Apache Point Observatory (APO) to obtain the ionized gas ro tation curves with R ~ 5000 resolution. We also performed near infrared (NIR) H and Ks photometry for 18 galaxies with the NICFPS camera on the 3.5m telescope. The spectra, the NIR photometry and published optical and NIR photometry are used for modeling that utilizes the thickness of the stellar disk and rotation curves simultaneously. The projection and dust extinction effects are taken into account. We evaluate eight models that differ by their free parameters and constraints. As a result, we estimated masses and scale lengths of the galactic dark halos. We find systematic differences between the properties of our red and blue STGs. The blue STGs have a large fraction of dynamically under-evolved galaxies whose vertical velocity dispersion is low in both gas and stellar disks. The dark halo-to-disk scale ratio is shorter in the red STGs than in the blue ones, but in a majority of all STGs this ratio is under 2. The optical color $(r-i)$ of the superthin galaxies correlates with their rotation curve maximum, vertical velocity dispersion in stellar disks, and mass of the dark halo. We conclude that there is a threshold central surface density of 50 $M_{odot}$,pc$^{-2}$ below which we do not observe very thin, rotationally supported galactic disks.
We use the {sc Illustris TNG300} magneto-hydrodynamic simulation, the {sc SAGE} semi-analytical model, and the subhalo abundance matching technique (SHAM) to examine the diversity in predictions for galaxy assembly bias (i.e. the difference in the la rge scale clustering of galaxies at a fixed halo mass due to correlations with the assembly history and other properties of host haloes). We consider samples of galaxies selected according to their stellar mass or star formation rate at various redshifts. We find that all models predict an assembly bias signal of different magnitude, redshift evolution, and dependence with selection criteria and number density. To model these non-trivial dependences, we propose an extension to the standard SHAM technique so it can include arbitrary amounts of assembly bias. We do this by preferentially selecting subhaloes with the same internal property but different {it individual} large-scale bias. We find that with this model, we can successfully reproduce the galaxy assembly bias signal in either {sc SAGE} or the {sc TNG}, for all redshifts and galaxy number densities. We anticipate that this model can be used to constrain the level of assembly bias in observations and aid in the creation of more realistic mock galaxy catalogues.
We perform near-infrared photometry of a large sample of 49 superthin edge-on galaxies. These galaxies are selected based on optical photometry because of high radial-to-vertical scale ratio in their stellar disks. The Near Infrared (NIR) H and K obs ervations were conducted with the cryogenic-cooled camera ASTRONIRCAM on the 2.5m telescope at the Caucasus Mountain Observatory of Lomonosov Moscow State University. A majority of galaxies in our sample show comparable or better photometric depth than the Sloan Digital Sky Survey (SDSS) optical images. We estimate the structural parameters of stellar disks in the galaxies and find that the NIR scale height of stellar disks is comparable to that estimated from the optical, SDSS g, r and i, whereas the H and K scale length of the stellar disks is significantly shorter than in the g, r and i. We investigate if a realistic distribution of dust alone can explain the difference in the scale length and find that in the majority of the galaxies the radial variation of the stellar population is actually responsible for the color distribution. The latter suggests a younger age of the disks periphery, and the inside out building up of stellar disks in the superthin galaxies.
We apply four different mass modelling methods to a suite of publicly available mock data for spherical stellar systems. We focus on the recovery of the density and velocity anisotropy as a function of radius, using either line-of-sight velocity data only, or adding proper motion data. All methods perform well on isotropic and tangentially anisotropic mock data, recovering the density and velocity anisotropy within their 95% confidence intervals over the radial range 0.25 < R/Rhalf < 4, where Rhalf is the half light radius. However, radially-anisotropic mocks are more challenging. For line-of-sight data alone, only methods that use information about the shape of the velocity distribution function are able to break the degeneracy between the density profile and the velocity anisotropy to obtain an unbiased estimate of both. This shape information can be obtained through directly fitting a global phase space distribution function, by using higher order Virial Shape Parameters, or by assuming a Gaussian velocity distribution function locally, but projecting it self-consistently along the line of sight. Including proper motion data yields further improvements, and in this case, all methods give a good recovery of both the radial density and velocity anisotropy profiles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا