ﻻ يوجد ملخص باللغة العربية
Two-dimensional materials offer a versatile platform to study high-harmonic generation (HHG), encompassing as limiting cases bulk-like and atomic-like harmonic generation [Tancogne-Dejean and Rubio, Science Advance textbf{4}, eaao5207 (2018)]. Understanding the high-harmonic response of few-layer semiconducting systems is important, and might open up possible technological applications. Using extensive first-principle calculations within a time-dependent density functional theory framework, we show how the in-plane and out-of-plane nonlinear non-perturbative response of two-dimensional materials evolve from the monolayer to the bulk. We illustrate this phenomenon for the case of multilayer hexagonal BN layered systems. Whereas the in-plane HHG is found not to be strongly altered by the stacking of the layers, we found that the out-of-plane response is strongly affected by the number of layers considered. This is explained by the interplay between the induced electric field by electron-electron interactions and the interlayer delocalization of the wave-functions contributing most to the HHG signal. The gliding of a bilayer is also found to affect the high-harmonic emission. Our results will have important ramifications for the experimental study of monolayer and few-layer two-dimensional materials beyond the case of hexagonal BN studied here as the result we found arew generic and applicable to all 2D semiconducting multilayer systems.
We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic hamiltonian by drawing an analogy with molecular crystals, which a
Atomically thin van der Waals crystals have recently enabled new scientific and technological breakthroughs across a variety of disciplines in materials science, nanophotonics and physics. However, non-classical photon emission from these materials h
Hexagonal boron nitride (hBN) is a layered dielectric material with a wide range of applications in optics and photonics. In this work, we demonstrate a fabrication method for few-layer hBN flakes with areas up to 5000 $rm mu m$. We show that hBN in
Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitte
The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory (local second-order Moller-Plesset perturbation theory, LMP2). Our results show that both electrostatic and London dispersion inter