ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad-Band Negative Refraction via Simultaneous Multi-Electron Transitions

119   0   0.0 ( 0 )
 نشر من قبل Qing Ai Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze different factors which influence the negative refraction in solids and multi-atom molecules. We find that this negative refraction is significantly influenced by simultaneous multi-electron transitions with the same transition frequency and dipole redistribution over different eigenstates. We show that these simultaneous multi-electron transitions and enhanced transition dipole broaden the bandwidth of the negative refraction by at least one order of magnitude. This work provides additional connection between metamaterials and Mobius strips.



قيم البحث

اقرأ أيضاً

In this article, it has been theoretically shown that broad angle negative refraction is possible with asymmetric anisotropic metamaterials constructed by only dielectrics or loss less semiconductors at the telecommunication and relative wavelength r ange. Though natural uniaxial materials can exhibit negative refraction, the maximum angle of negative refraction and critical incident angle lie in a very narrow range. This notable problem can be overcome by our proposed structure. In our structures, negative refraction originates from the highly asymmetric elliptical iso-frequency.This is artificially created by the rotated multilayer sub-wavelength dielectric/semiconductor stack, which act as an effective asymmetric anisotropic metamaterial.This negative refraction is achieved without using any negative permittivity materials such as metals. As we are using simple dielectrics, fabrication of such structures would be less complex than that of the metal based metamaterials. Our proposed ideas have been validated numerically and also by the full wave simulations considering both the effective medium approach and realistic structure model. This device might find some important applications in photonics and optoelectronics.
We show that a gas of relativistic electrons is a left-handed material at low frequencies by computing the effective electric permittivity and effective magnetic permeability that appear in Maxwells equations in terms of the responses appearing in th e constitutive relations, and showing that the former are both negative below the {it same} frequency, which coincides with the zero-momentum frequency of longitudinal plasmons. We also show, by explicit computation, that the photonic mode of the electromagnetic radiation does not dissipate energy, confirming that it propagates in the gas with the speed of light in vacuum, and that the medium is transparent to it. We then combine those results to show that the gas has a negative effective index of refraction $n_{rm eff}=-1$. We illustrate the consequences of this fact for Snells law, and for the reflection and transmission coefficients of the gas.
By introducing a new mechanism based on purely imaginary conjugate metamaterials (PICMs), we reveal that bidirectional negative refraction and planar focusing can be obtained using a pair of PICMs, which is a breakthrough to the unidirectional limit in parity time (PT) symmetric systems. Compared with PT symmetric systems that require two different kinds of materials, the proposed negative refraction can be realized with only two identical media. In addition, asymmetric excitation with bidirectional total transmission is observed in our PICM system. Therefore, a new way to realize negative refraction is presented, with more properties than those in PT symmetric systems.
120 - Z. G. Dong , S. N. Zhu , 2005
Negative-index refraction is achieved in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeabil ity of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the famous left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such an ENG-MNG lamellar composite. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.
114 - D. Becerril , G. Pirruccio , 2021
Inspired by recent advances in atomic homo and heterostructures, we consider the vertical stacking of plasmonic lattices as a new degree of freedom to create a coupled system showing a modified optical response concerning the monolayer. The precise d esign of the stacking and the geometrical parameters of two honeycomb plasmonic lattices tailors the interaction among their metallic nanoparticles. Based on the similarity of the lattice symmetry, analogies can be drawn with stacked atomic crystals, such as graphene. We use the multipolar spectral representation to study the plasmonic vertical stacks optical response in the near-field regime, emphasizing symmetry properties. The strong coupling of certain optical bands shows up as anticrossings in the dispersion diagram, resulting in the polarization exchange of the interacting bands. By leveraging these effects, we engineer the near-field intensity distribution. Additionally, lifting band degeneracy at specific points of the Brillouin zone is obtained with the consequent opening of minigaps. These effects are understood by quantifying the multipolar coupling among nanospheres belonging to the same and different sublattices, as well as the interlayer and intralayer nanoparticle interactions. Differences with the atomic case are also analyzed and explained in terms of the stacks interaction matrix. Finally, we predict the absorption spectrum projected on the two orthogonal linear polarizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا