ﻻ يوجد ملخص باللغة العربية
We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. As a tool to interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study three applications: an empirical analysis of the impact of conditional cash transfers in Mexico where misspecification stems from the presence of stigma effects of the program, a cross-sectional binary choice model where the error distribution is misspecified, and a dynamic panel data binary choice model where the number of time periods is small and the distribution of individual effects is misspecified.
Dynamic model averaging (DMA) combines the forecasts of a large number of dynamic linear models (DLMs) to predict the future value of a time series. The performance of DMA critically depends on the appropriate choice of two forgetting factors. The fi
A new statistical procedure, based on a modified spline basis, is proposed to identify the linear components in the panel data model with fixed effects. Under some mild assumptions, the proposed procedure is shown to consistently estimate the underly
Structural estimation is an important methodology in empirical economics, and a large class of structural models are estimated through the generalized method of moments (GMM). Traditionally, selection of structural models has been performed based on
We develop a novel method of constructing confidence bands for nonparametric regression functions under shape constraints. This method can be implemented via a linear programming, and it is thus computationally appealing. We illustrate a usage of our
We propose a unified frequency domain cross-validation (FDCV) method to obtain an HAC standard error. Our proposed method allows for model/tuning parameter selection across parametric and nonparametric spectral estimators simultaneously. Our candidat