ﻻ يوجد ملخص باللغة العربية
We consider a model of dark matter fluid based on a sector of Horndeski gravity. The model is very successful, at the background level, in reproducing the evolution of the Universe from early times to today. However, at the perturbative level the model fails. To show this, we use the code $texttt{hi_class}$ and we compute the matter power spectrum and the cosmic microwave background spectrum. Our results confirm, in a new and independent way, that this sector of Horndeski gravity is not viable, in agreement with the recent constraints coming from the measurement of the speed of gravitational waves obtained from the observation of the neutron star merger event GW170817.
We study spherically symmetric solutions with a scalar field in the shift-symmetric subclass of the Horndeski theory. Constructing an effective energy-momentum tensor of the scalar field based on the two-fluid model, we decompose the scalar field int
Until recently the study of the gravitational field of dark matter was primarily concerned with its local effects on the motion of stars in galaxies and galaxy clusters. On the other hand, the WMAP experiment has shown that the gravitational field pr
We investigate the propagation of primordial gravitational waves within the context of the Horndeski theories, for this, we present a generalized transfer function quantifying the sub-horizon evolution of gravitational waves modes after they enter th
The Horndeski theories are extended into the Lovelock gravity theory. When the canonical scalar field is uniquely kinetically coupled to the Lovelock tensors, it is named after Lovelock scalar field. The Lovelock scalar field model is a subclass of t
It was found recently that the anisotropies in the homogeneous Bianchi I cosmology considered within the context of a specific Horndeski theory are damped near the initial singularity instead of being amplified. In this work we extend the analysis of