ﻻ يوجد ملخص باللغة العربية
We report the development of a 4-color simultaneous camera for the 1.52~m Telescopio Carlos Sanchez (TCS) in the Teide Observatory, Canaries, Spain. The new instrument, named MuSCAT2, has a capability of 4-color simultaneous imaging in $g$ (400--550 nm), $r$ (550--700 nm), $i$ (700--820 nm), and $z_s$ (820--920 nm) bands. MuSCAT2 equips four 1024$times$1024 pixel CCDs, having a field of view of 7.4$times$7.4 arcmin$^2$ with a pixel scale of 0.44 arcsec per pixel. The principal purpose of MuSCAT2 is to perform high-precision multi-color exoplanet transit photometry. We have demonstrated photometric precisions of 0.057%, 0.050%, 0.060%, and 0.076% as root-mean-square residuals of 60~s binning in $g$, $r$, $i$ and $z_s$ bands, respectively, for a G0 V star WASP-12 ($V=11.57pm0.16$). MuSCAT2 has started science operations since January 2018, with over 250 telescope nights per year. MuSCAT2 is expected to become a reference tool for exoplanet transit observations, and will substantially contribute to the follow-up of the TESS and PLATO space missions.
We report a development of a multi-color simultaneous camera for the 188cm telescope at Okayama Astrophysical Observatory in Japan. The instrument, named MuSCAT, has a capability of 3-color simultaneous imaging in optical wavelength where CCDs are se
The Canarias InfraRed Camera Experiment (CIRCE) is a near-infrared (1-2.5 micron) imager, polarimeter and low-resolution spectrograph operating as a visitor instrument for the Gran Telescopio Canarias 10.4-meter telescope. It was designed and built l
The HARPS/HARPS-N Data Reduction Software (DRS) relies on the cross-correlation between the observed spectra and a suitable stellar mask to compute a cross-correlation function (CCF) to be used both for the radial velocity (RV) computation and as an
Enabling efficient injection of light into single-mode fibers (SMFs) is a key requirement in realizing diffraction-limited astronomical spectroscopy on ground-based telescopes. SMF-fed spectrographs, facilitated by the use of adaptive optics (AO), of
For years, the standard procedure to measure radial velocities (RVs) of spectral observations consisted in cross-correlating the spectra with a binary mask, that is, a simple stellar template that contains information on the position and strength of