ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations and perspectives on the variation of biodiversity

391   0   0.0 ( 0 )
 نشر من قبل Dirson Jian Li
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Dirson Jian Li




اسأل ChatGPT حول البحث

Based on statistical analysis of the complete genome sequences, a remote relationship has been observed between the evolution of the genetic code and the three domain tree of life. The existence of such a remote relationship need to be explained. The unity of the living system throughout the history of life relies on the common features of life: the homochirality, the genetic code and the universal genome format. The universal genome format has been observed in the genomic codon distributions as a common feature of life at the sequence level. A main aim of this article is to reconstruct and to explain the Phanerozoic biodiversity curve. It has been observed that the exponential growth rate of the Phanerozoic biodiversity curve is about equal to the exponential growth rate of genome size evolution. Hence it is strongly indicated that the expansion of genomes causes the exponential trend of the Phanerozoic biodiversity curve, where the conservative property during the evolution of life is guaranteed by the universal genome format at the sequence level. In addition, a consensus curve based on the climatic and eustatic data is obtained to explain the fluctuations of the Phanerozoic biodiversity curve. Thus, the reconstructed biodiversity curve based on genomic, climatic and eustatic data agrees with Sepkoskis curve based on fossil data. The five mass extinctions can be discerned in this reconstructed biodiversity curve, which indicates a tectonic cause of the mass extinctions. And the declining origination rate and extinction rate throughout the Phanerozoic eon might be due to the growth trend in genome size evolution.



قيم البحث

اقرأ أيضاً

This work deals with the influence of the neighborhood in simple rock-paper-scissors models of biodiversity. We consider the case of three distinct species which evolve under the standard rules of mobility, reproduction and competition. The rule of c ompetition follows the guidance of the rock-paper-scissors game, with the prey being annihilated, leaving an empty site in accordance with the May-Leonard proposal for the predator and prey competition. We use the von Neumann neighborhood, but we consider mobility under the presence of the first, second and third neighbors in three distinct environments, one with equal probability and the others with probability following the power law and exponential profiles. The results are different, but they all show that increasing the neighbourhood increases the characteristic length of the system in an important way. We have studied other possibilities, in particular the case where one modifies the manner a specific species competes, unveiling the interesting result in which the strongest individuals may constitute the less abundant population.
111 - Dirson Jian Li 2018
Rich information on the prebiotic evolution is still stored in contemporary genomic data. The statistical mechanism at the sequence level may play a significant role in the prebiotic evolution. Based on statistical analysis of genome sequences, it ha s been observed that there is a close relationship between the evolution of the genetic code and the organisation of genomes. A biodiversity space for species is constructed based on comparing the distributions of codons in genomes for different species according to recruitment order of codons in the prebiotic evolution, by which a closely relationship between the evolution of the genetic code and the tree of life has been confirmed. On one hand, the three domain tree of life can be reconstructed according to the distance matrix of species in this biodiversity space, which supports the three-domain tree rather than the eocyte tree. On the other hand, an evolutionary tree of codons can be obtained by comparing the distributions of the 64 codons in genomes, which agrees with the recruitment order of codons on the roadmap. This is a simple phylogenomic method to study the origins of metazoan, the evolution of primates, etc. This study should be regarded as an exploratory attempt to explain the diversification of the three domains of life by statistical mechanism in prebiotic sequence evolution. It is indicated that the number of bases in the triplet codons might be explained statistically by the number of strands in the triplex DNAs. The adaptation of life to the changing environment might be due to assembly of redundant genomes at the sequence level.
The unprecedented size of the human population, along with its associated economic activities, have an ever increasing impact on global environments. Across the world, countries are concerned about the growing resource consumption and the capacity of ecosystems to provide them. To effectively conserve biodiversity, it is essential to make indicators and knowledge openly available to decision-makers in ways that they can effectively use them. The development and deployment of mechanisms to produce these indicators depend on having access to trustworthy data from field surveys and automated sensors, biological collections, molecular data, and historic academic literature. The transformation of this raw data into synthesized information that is fit for use requires going through many refinement steps. The methodologies and techniques used to manage and analyze this data comprise an area often called biodiversity informatics (or e-Biodiversity). Biodiversity data follows a life cycle consisting of planning, collection, certification, description, preservation, discovery, integration, and analysis. Researchers, whether producers or consumers of biodiversity data, will likely perform activities related to at least one of these steps. This article explores each stage of the life cycle of biodiversity data, discussing its methodologies, tools, and challenges.
72 - Dirson Jian Li 2018
The post-genomic era has brought opportunities to bridge traditionally separate fields of early history of life and brought new insight into origin and evolution of biodiversity. According to distributions of codons in genome sequences, I found a rel ationship between the genetic code and the tree of life. This remote and profound relationship involves the origin and evolution of the genetic code and the diversification and expansion of genomes. Here, a prebiotic picture of the triplex nucleic acid evolution is proposed to explain the origin of the genetic code, where the transition from disorder to order in the origin of life might be due to the increasing stabilities of triplex base pairs. The codon degeneracy can be obtained in detail based on the coevolution of the genetic code with amino acids, or equivalently, the coevolution of tRNAs with aaRSs. This theory is based on experimental data such as the stability of triplex base pairs and the statistical features of genomic codon distributions. Several experimentally testable proposals have been developed. This study should be regarded as an exploratory attempt to reveal the early evolution of life based on sequence information in a statistical manner.
Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperat ive behaviors. However, standard modeling of population dynamics based on Lotka-Volterra type of equations predicts that ecosystem stability should decrease as the number of species in the community increases and that cooperative systems are less stable than communities with only competitive and/or exploitative interactions. Here we propose a stochastic model of population dynamics, which includes exploitative interactions as well as cooperative interactions induced by cross-feeding. The model is exactly solved and we obtain results for relevant macro-ecological patterns, such as species abundance distributions and correlation functions. In the large system size limit, any number of species can coexist for a very general class of interaction networks and stability increases as the number of species grows. For pure mutualistic/commensalistic interactions we determine the topological properties of the network that guarantee species coexistence. We also show that the stationary state is globally stable and that inferring species interactions through species abundance correlation analysis may be misleading. Our theoretical approach thus show that appropriate models of cooperation naturally leads to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا