ﻻ يوجد ملخص باللغة العربية
We show that in abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than $t$ topplings decays as $t^{-1/2}$. We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (2003), that was previously used by Lyons, Morris and Schramm (2008) to study uniform spanning forests on $mathbb{Z}^d$, $dgeq 3$, and other transient graphs.
At each site of a supercritical Galton-Watson tree place a parking spot which can accommodate one car. Initially, an independent and identically distributed number of cars arrive at each vertex. Cars proceed towards the root in discrete time and park
We study the totally asymmetric simple exclusion process (TASEP) on trees where particles are generated at the root. Particles can only jump away from the root, and they jump from $x$ to $y$ at rate $r_{x,y}$ provided $y$ is empty. Starting from the
A recursive function on a tree is a function in which each leaf has a given value, and each internal node has a value equal to a function of the number of children, the values of the children, and possibly an explicitly specified random element $U$.
Distinguishing between continuous and first-order phase transitions is a major challenge in random discrete systems. We study the topic for events with recursive structure on Galton-Watson trees. For example, let $mathcal{T}_1$ be the event that a Ga
When normal and mis`{e}re games are played on bi-type binary Galton-Watson trees (with vertices coloured blue or red and each having either no child or precisely $2$ children), with one player allowed to move along monochromatic edges and the other a