ترغب بنشر مسار تعليمي؟ اضغط هنا

First Ground-based Measurement of Sub-20 GeV to 100 GeV $gamma$-rays from the Vela Pulsar with H.E.S.S. II

62   0   0.0 ( 0 )
 نشر من قبل Arache Djannati-Atai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the measurement and investigation of pulsed high-energy $gamma$-ray emission from the Vela pulsar, PSR B0833$-$45, based on 40.3 hours of observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on 8 years of data obtained with the Fermi-LAT. A dedicated very-low-threshold event reconstruction and analysis pipeline was developed and, together with the CT5 telescope response model, was validated using the Fermi-LAT data as reference. A pulsed $gamma$-ray signal at a significance level of more than $15sigma$ is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi-LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV, in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e., an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4$sigma$ significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices ($Gamma simeq$ 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8% is derived on the relative offset between their energy scales. Using both instruments data, it is however shown that the spectrum of P2 in the 10-100 GeV has a pronounced curvature, i.e. a confirmation of the sub-exponential cutoff form found at lower energies with the LAT. This is further supported by the weak evidence for an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV.



قيم البحث

اقرأ أيضاً

We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 Gigaelectronvolts (GeV) with the VERITAS array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The p hoton spectrum of pulsed emission between 100 Megaelectronvolts (MeV) and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.
The First fermi-LAT Catalog of Sources Above 10 GeV reported evidence of pulsed emission above 25 GeV from 12 pulsars, including the Vela pulsar, which showed evidence of pulsation at $>37$ GeV energy bands. Using 62 months of fermi-LAT data, we anal yzed the gamma-ray emission from the Vela pulsar and searched for pulsed emission above 50 GeV. Having confirmed the significance of the pulsation in 30-50 GeV with the H-test (p-value $sim10^{-77}$), we extracted its pulse profile using the Bayesian block algorithm and compared it with the distribution of the 5 observed photons above 50 GeV using the likelihood ratio test. Pulsation was significantly detected for photons above 50 GeV with p-value $=3times10^{-5}$ ($4.2sigma$). The detection of pulsation is significant above $4sigma$ at $>79$ GeV and above $3sigma$ at $>90$ GeV energy bands, making this the highest energy pulsation significantly detected by the LAT. We explore non-stationary outer gap scenario of the very high-energy emissions from the Vela pulsar.
The recent addition of the 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiments sensitivity towards low energies. The lowest energy threshold is obtained using monoscopic observations with CT5, providing access to gamma-ray e nergies below 100 GeV. This is particularly beneficial for studies of Active Galactic Nuclei (AGN) with soft spectra and located at redshifts >= 0.5. Stereoscopic measurements with the full array (CT1-5) provide a better background rejection than CT5 Mono, at a cost of a higher threshold. We report on the analysis employing the CT5 data for AGN observations with a < 100 GeV threshold. In particular, the spectra of PKS 2155-304 and PG 1553+113 are presented.
A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to rej ect mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon neutrino plus muon antineutrino flux.
Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric u_mu + bar{ u}_mu energy spectrum in the energy range 0.1 - 200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ~25% higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma_{meas}=3.58pm 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا