ترغب بنشر مسار تعليمي؟ اضغط هنا

Industrial Big Data Analytics: Challenges, Methodologies, and Applications

73   0   0.0 ( 0 )
 نشر من قبل JunPing Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While manufacturers have been generating highly distributed data from various systems, devices and applications, a number of challenges in both data management and data analysis require new approaches to support the big data era. These challenges for industrial big data analytics is real-time analysis and decision-making from massive heterogeneous data sources in manufacturing space. This survey presents new concepts, methodologies, and applications scenarios of industrial big data analytics, which can provide dramatic improvements in velocity and veracity problem solving. We focus on five important methodologies of industrial big data analytics: 1) Highly distributed industrial data ingestion: access and integrate to highly distributed data sources from various systems, devices and applications; 2) Industrial big data repository: cope with sampling biases and heterogeneity, and store different data formats and structures; 3) Large-scale industrial data management: organizes massive heterogeneous data and share large-scale data; 4) Industrial data analytics: track data provenance, from data generation through data preparation; 5) Industrial data governance: ensures data trust, integrity and security. For each phase, we introduce to current research in industries and academia, and discusses challenges and potential solutions. We also examine the typical applications of industrial big data, including smart factory visibility, machine fleet, energy management, proactive maintenance, and just in time supply chain. These discussions aim to understand the value of industrial big data. Lastly, this survey is concluded with a discussion of open problems and future directions.



قيم البحث

اقرأ أيضاً

Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analy tics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we c onstruct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represents one unit of computation, and big data workloads are decomposed into one or more dwarfs. Furthermore, dwarfs workloads rather than vast real workloads are more cost-efficient and representative to evaluate big data systems. In this paper, we extensively investigate six most important or emerging application domains i.e. search engine, social network, e-commerce, multimedia, bioinformatics and astronomy. After analyzing forty representative algorithms, we single out eight dwarfs workloads in big data analytics other than OLAP, which are linear algebra, sampling, logic operations, transform operations, set operations, graph operations, statistic operations and sort.
215 - Jundong Li , Huan Liu 2016
We are surrounded by huge amounts of large-scale high dimensional data. It is desirable to reduce the dimensionality of data for many learning tasks due to the curse of dimensionality. Feature selection has shown its effectiveness in many application s by building simpler and more comprehensive model, improving learning performance, and preparing clean, understandable data. Recently, some unique characteristics of big data such as data velocity and data variety present challenges to the feature selection problem. In this paper, we envision these challenges of feature selection for big data analytics. In particular, we first give a brief introduction about feature selection and then detail the challenges of feature selection for structured, heterogeneous and streaming data as well as its scalability and stability issues. At last, to facilitate and promote the feature selection research, we present an open-source feature selection repository (scikit-feature), which consists of most of current popular feature selection algorithms.
Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage res ources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT.We identify and discuss the indispensable challenges that remain to be addressed as future research directions as well.
Clinicians decisions are becoming more and more evidence-based meaning in no other field the big data analytics so promising as in healthcare. Due to the sheer size and availability of healthcare data, big data analytics has revolutionized this indus try and promises us a world of opportunities. It promises us the power of early detection, prediction, prevention and helps us to improve the quality of life. Researchers and clinicians are working to inhibit big data from having a positive impact on health in the future. Different tools and techniques are being used to analyze, process, accumulate, assimilate and manage large amount of healthcare data either in structured or unstructured form. In this paper, we would like to address the need of big data analytics in healthcare: why and how can it help to improve life?. We present the emerging landscape of big data and analytical techniques in the five sub-disciplines of healthcare i.e.medical image analysis and imaging informatics, bioinformatics, clinical informatics, public health informatics and medical signal analytics. We presents different architectures, advantages and repositories of each discipline that draws an integrated depiction of how distinct healthcare activities are accomplished in the pipeline to facilitate individual patients from multiple perspectives. Finally the paper ends with the notable applications and challenges in adoption of big data analytics in healthcare.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا