ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of an active region filament driven by a series of jets

377   0   0.0 ( 0 )
 نشر من قبل Jincheng Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a formation process of a filament in active region NOAA 12574 during the period from 2016 August 11 to 12. Combining the observations of GONG H$alpha$, Hida spectrum and SDO/AIA 304 A, the formation process of the filament is studied. It is found that cool material ($Tsim10^4$ K) is ejected by a series of jets originating from the western foot-point of the filament. Simultaneously, the magnetic flux emerged from the photosphere in the vicinity of the western foot-point of the filament. These observations suggest that cool material in the low atmosphere can be directly injected into the upper atmosphere and the jets are triggered by the magnetic reconnection between pre-existing magnetic fields and new emerging magnetic fields. Detailed study of a jet at 18:02 UT on August 11 with GST/BBSO TiO observations reveals that some dark threads appeared in the vicinity of the western foot-point after the jet and the projection velocity of plasma along the filament axis was about 162.6$pm$5.4 km/s. Using with DST/Hida observations, we find that the injected plasma by a jet at 00:42 UT on August 12 was rotating. Therefore, we conclude that the jets not only supplied the material for the filament, but also injected the helicity into the filament simultaneously. Comparing the quantity of mass injection by the jets with the mass of the filament, we conclude that the estimated mass loading by the jets is sufficient to account for the mass in the filament.



قيم البحث

اقرأ أيضاً

125 - C. Kuckein 2013
Several scenarios explaining how filaments are formed can be found in literature. In this paper, we analyzed the observations of an active region filament and critically evaluated the observed properties in the context of current filament formation m odels. This study is based on multi-height spectropolarimetric observations. The inferred vector magnetic field has been extrapolated starting either from the photosphere or from the chromosphere. The line-of-sight motions of the filament, which was located near disk center, have been analyzed inferring the Doppler velocities. We conclude that a part of the magnetic structure emerged from below the photosphere.
89 - X.L. Yan , E.R. Priest , Q.L. Guo 2016
We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from October 31 to November 2, 2013. In the initial stage, clockwise rotation of a small positive sunspot around the main n egative trailing sunspot formed a curved filament. Then the small sunspot cancelled with negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two opposite polarities under the upper part of the filament. Nonlinear force-free field (NLFFF) extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.
Flux ropes are generally believed to be core structures of solar eruptions that are significant for the space weather, but their formation mechanism remains intensely debated. We report on the formation of a tiny flux rope beneath clusters of active region loops on 2018 August 24. Combining the high-quality multiwavelength observations from multiple instruments, we studied the event in detail in the photosphere, chromosphere, and corona. In the source region, the continual emergence of two positive polarities (P1 and P2) that appeared as two pores (A and B)is unambiguous. Interestingly, P2 and Pore B slowly approached P1 and Pore A, implying a magnetic flux convergence. During the emergence and convergence, P1 and P2 successively interacted with a minor negative polarity (N3) that emerged, which led to a continuous magnetic flux cancellation. As a result, the overlying loops became much sheared and finally evolved into a tiny twisted flux rope that was evidenced by a transient inverse S-shaped sigmoid, the twisted filament threads with blueshift and redshift signatures, and a hot channel. All the results show that the formation of the tiny flux rope in the center of the active region was closely associated with the continuous magnetic flux emergence, convergence, and cancellation in the photosphere. Hence, we suggest that the magnetic flux emergence, convergence, and cancellation are crucial for the formation of the tiny flux rope.
113 - Durgesh Tripathi 2021
We study the formation of transient loops in the core of the AR 11890. For this purpose, we have used the observations recorded by the Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS). For photospheric field con figuration, we have used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager (HMI). The transient is simultaneously observed in all the UV and EUV channels of AIA and the three slit-jaw images from IRIS. The co-existence of the transient in all AIA and IRIS SJI channels suggests the transients multi-thermal nature. The transient consists of short loops located at the base of the transient as well as longe loops. A differential emission measure (DEM) analysis shows that the transient has a clumpy structure. The highest emission observed at the base is within the temperature bin of $log, T = 6.65 - 6.95$. We observe the longer loops at a similar temperature, albeit very feeble. Using LOS magnetograms, we conclude that the magnetic reconnection may have caused the transient. Our observations further suggest that the physics of the formation of such transients may be similar to those of typical coronal jets, albeit in different topological configurations. Such multi-wavelength observations shed light on the formation of hot plasma in the solar corona and provide further essential constraints on modeling the thermodynamics of such transients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا