ﻻ يوجد ملخص باللغة العربية
Recently, Nunge studied Eulerian polynomials on segmented permutations, namely emph{generalized Eulerian polynomials}, and further asked whether their coefficients form unimodal sequences. In this paper, we prove the stability of the generalized Eulerian polynomials and hence confirm Nunges conjecture. Our proof is based on Brandens stable multivariate Eulerian polynomials. By acting on Brandens polynomials with a stability-preserving linear operator, we get a multivariate refinement of the generalized Eulerian polynomials. To prove Nunges conjecture, we also develop a general approach to obtain generalized Sturm sequences from bivariate stable polynomials.
Inspired by the recent work of Chen and Fu on the e-positivity of trivariate second-order Eulerian polynomials, we show the e-positivity of a family of multivariate k-th order Eulerian polynomials. A relationship between the coefficients of this e-po
A ballot permutation is a permutation {pi} such that in any prefix of {pi} the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n,d,j)}, which denot
In this paper we present grammatical interpretations of the alternating Eulerian polynomials of types A and B. As applications, we derive several properties of the type B alternating Eulerian polynomials, including combinatorial expansions, recurrenc
A formula of Stembridge states that the permutation peak polynomials and descent polynomials are connected via a quadratique transformation. The aim of this paper is to establish the cycle analogue of Stembridges formula by using cycle peaks and exce
We prove that the Eulerian polynomial satisfies certain polynomial congruences. Furthermore, these congruences characterize the Eulerian polynomial.