ﻻ يوجد ملخص باللغة العربية
Despite the apparent ease with which a sheet of paper is crumpled and tossed away, crumpling dynamics are often considered a paradigm of complexity. This complexity arises from the infinite number of configurations a disordered crumpled sheet can take. Here we experimentally show that key aspects of crumpling have a very simple description; the evolution of the damage in crumpling dynamics can largely be described by a single global quantity, the total length of all creases. We follow the evolution of the damage network in repetitively crumpled elastoplastic sheets, and show that the dynamics of this quantity are deterministic, and depend only on the instantaneous state of the crease network and not at all on the crumpling history. We also show that this global quantity captures the crumpling dynamics of a sheet crumpled for the first time. This leads to a remarkable reduction in complexity, allowing a description of a highly disordered system by a single state parameter. Similar strategies may also be useful in analyzing other systems that evolve under geometric and mechanical constraints, from faulting of tectonic plates to the evolution of proteins.
We show that a viscoelastic thin sheet driven out of equilibrium by active structural remodelling develops a rich variety of shapes as a result of a competition between viscous relaxation and activity. In the regime where active processes are faster
Many objects in nature and industry are wrapped in a thin sheet to enhance their chemical, mechanical, or optical properties. There are similarly a variety of methods for wrapping, from pressing a film onto a hard substrate, to using capillary forces
Instabilities in thin elastic sheets, such as wrinkles, are of broad interest both from a fundamental viewpoint and also because of their potential for engineering applications. Nematic liquid crystal elastomers offer a new form of control of these i
Crumpling of a thin film leads to a unique stiff yet lightweight structure. The stiffness has been attributed to a complex interplay between four basic elements - smooth bends, sharp folds, localized points (developable cones), and stretching ridges
We consider three-dimensional reshaping of thin nemato-elastic sheets containing half-charged defects upon nematic-isotropic transition. Gaussian curvature, that can be evaluated analytically when the nematic texture is known, differs from zero in th