ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure of topological superconductor candidate Au${}_{2}$Pb

269   0   0.0 ( 0 )
 نشر من قبل Yun Wu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use magnetization measurements, high-resolution angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations to study the electronic properties of Au${}_{2}$Pb, a topological superconductor candidate. The magnetization measurements reveal three discontinuities at 40, 51, and 99~K that agree well with reported structural phase transitions. ARPES measurements of the Au${}_{2}$Pb (111) surface at 110~K shows a shallow hole pocket at the center and flower-petal-like surface states at the corners of the Brillouin zone. These observations match the results of DFT calculations relatively well. The flower-petal-like surface states appear to originate from a Dirac like dispersion close to the zone corner. For the Au${}_{2}$Pb (001) surface at 150~K, ARPES reveals at least one electron pocket between the $Gamma$ and $M$ points, consistent with the DFT calculations. Our results provide evidence for the possible existence of Dirac state in this material.



قيم البحث

اقرأ أيضاً

Topological superconductors (TSCs), with the capability to host Majorana bound states that can lead to non-Abelian statistics and application in quantum computation, have been one of the most intensively studied topics in condensed matter physics rec ently. Up to date, only a few compounds have been proposed as candidates of intrinsic TSCs, such as doped topological insulator CuxBi2Se3 and iron-based superconductor FeTe0.55Se0.45. Here, by carrying out synchrotron and laser based angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of a quasi-1D superconductor TaSe3, and identified the nontrivial topological surface states. In addition, our scanning tunneling microscopy (STM) study revealed a clean cleaved surface with a persistent superconducting gap, proving it suitable for further investigation of potential Majorana modes. These results prove TaSe3 as a stoichiometric TSC candidate that is stable and exfoliable, therefore a great platform for the study of rich novel phenomena and application potentials.
114 - Y. Quan , W. E. Pickett 2013
The recently reported nickel carbide superconductor, body centered tetragonal $I4/mmm$ Th$_2$NiC$_2$ with T$_c$ = 8.5 K increasing to 11.2 K upon alloying Th with Sc, is found to have very fine structure in its electronic spectrum, according to densi ty functional based first principles calculations. The filled Ni 3d band complex is hybridized with C $2p$ and Th character to and through the Fermi level ($E_f$), and a sharply structured density of states arises only when spin-orbit coupling is included, which splits a zone-center degeneracy leaving a very flat band edge lying at the Fermi level. The flat part of the band corresponds to an effective mass $m^*_{z} rightarrow infty$ with large and negative $m^*_{x}=m^*_{y}$. Although the region over which the effective mass characterization applies is less than 1% of the zone volume, it yet supplies of the order of half the states at (or just above) the Fermi level. The observed increase of T$_c$ by hole-doping is accounted for if the reference as-synthesized sample is minutely hole-doped, which decreases the Fermi level density of states and will provide some stabilization. In this scenario, electron doping will increase the Fermi level density of states and the superconducting critical temperature. Vibrational properties are presented, and enough coupling to the C-Ni-C stretch mode at 70 meV is obtained to imply that superconductivity is electron-phonon mediated.
A topological superconductor candidate $beta$-RhPb$_2$ is predicted by using the first-principles electronic structure calculations. Our calculations show that there is a band inversion around the Fermi level at the Z point of Brillouin zone. The cal culated nonzero topological invariant Z$_2$ indicates that $beta$-RhPb$_2$ is a topological insulator defined on a curved Fermi level. The slab calculations further demonstrate that the gapless nontrivial topological surface states (TSS) are not overlapped by the bulk states and they cross the Fermi level. The phonon calculations confirm the dynamical stability of $beta$-RhPb$_2$, while the electron-phonon coupling (EPC) calculations predict that the superconducting transition temperature ($T_c$) of $beta$-RhPb$_2$ can reach 9.7 K. The coexistence of nontrivial topological band structure with the TSS crossing the Fermi level as well as the superconducting $T_c$ above the liquid-helium temperature suggest that the layered compound $beta$-RhPb$_2$ is a topological superconductor, which deserves further experimental verification.
79 - S. Raymond , A. Huxley 2003
Inelastic neutron scattering was used to study the low energy magnetic excitations of the ferromagnetic superconductor UGe$_{2}$. The ferromagnetic fluctuations are of Ising nature with a non-conserved magnetization and have an intermediate behavior between localized and itinerant magnetism.
Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana ferimons important for quantum computation. The uranium based heavyfermion superconductor UTe$_2$ has been argued as a spin-triplet su perconductor similar to UGe$_2$, URhGe, and UCoGe, where the superconducting phase is near (or coexists with) a ferromagnetic (FM) instability and spin-triplet electron pairing is driven by FM spin fluctuations. Here we use neutron scattering to show that although UTe$_2$ exhibits no static magnetic order down to 0.3 K, its magnetism is dominated by incommensurate spin fluctuations near antiferromagnetic (AF) ordering wave vector and extends to at least 2.6 meV. We are able to understand the dominant incommensurate spin fluctuations of UTe$_2$ in terms of its electronic structure calculated using a combined density functional and dynamic mean field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا