ﻻ يوجد ملخص باللغة العربية
Hybrid superconducting--spin systems offer the potential to combine highly coherent atomic quantum systems with the scalability of superconducting circuits. To fully exploit this potential requires a high quality-factor microwave resonator, tunable in frequency and able to operate at magnetic fields optimal for the spin system. Such magnetic fields typically rule out conventional Al-based Josephson junction devices that have previously been used for tunable high-$Q$ microwave resonators. The larger critical field of niobium (Nb) allows microwave resonators with large field resilience to be fabricated. Here, we demonstrate how constriction-type weak links, patterned in parallel into the central conductor of a Nb coplanar resonator using a neon focused ion beam (FIB), can be used to implement a frequency-tunable resonator. We study transmission through two such devices and show how they realise high quality factor, tunable, field resilient devices which hold promise for future applications coupling to spin systems.
We have used a neon focused-ion-beam to fabricate both nanoscale Nb Dayem bridges and NbN phase-slip nanowires located at the short-circuited end of quarter-wavelength coplanar waveguide resonators. The Dayem bridge devices show flux-tunability and i
We have fabricated planar amorphous Indium Oxide superconducting resonators ($T_csim2.8$ K) that are sensitive to frequency-selective radiation in the range of 7 to 10 GHz. Those values lay far below twice the superconducting gap that worths about 20
Nanoscale magnets might form the building blocks of next generation memories. To explore their functionality, magnetic sensing at the nanoscale is key. We present a multifunctional combination of a scanning nanometer-sized superconducting quantum int
In quantum computing architectures, one important factor is the trade-off between the need to couple qubits to each other and to an external drive and the need to isolate them well enough in order to protect the information for an extended period of
We have fabricated and studied a system of two tunable and coupled nonlinear superconducting resonators. The nonlinearity is introduced by galvanically coupled dc-SQUIDs. We simulate the system response by means of a circuit model, which includes an