ﻻ يوجد ملخص باللغة العربية
Spatial networks are a powerful framework for studying a large variety of systems belonging to a broad diversity of contexts: from transportation to biology, from epidemiology to communications, and migrations, to cite a few. Spatial networks can be described in terms of their total cost (i.e. the total amount of resources needed for building or traveling their connections). Here, we address the issue of how to gauge and compare the quality of spatial network designs (i.e. efficiency vs. total cost) by proposing a two-step methodology. Firstly, we assess the networks design by introducing a quality function based on the concept of networks efficiency. Second, we propose an algorithm to estimate computationally the upper bound of our quality function for a given network. Complementarily, we provide a universal expression to obtain an approximated upper bound to any spatial network, regardless of its size. Smaller differences between the upper bound and the empirical value correspond to better designs. Finally, we test the applicability of this analytic tool-set on spatial network data-sets of different nature.
In this paper, we study a family of conservative bandit problems (CBPs) with sample-path reward constraints, i.e., the learners reward performance must be at least as well as a given baseline at any time. We propose a One-Size-Fits-All solution to CB
Motivated by results of Henry, Pralat and Zhang (PNAS 108.21 (2011): 8605-8610), we propose a general scheme for evolving spatial networks in order to reduce their total edge lengths. We study the properties of the equilbria of two networks from this
In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on {em correlated} networks has not been addressed. Interestingly, we find that the epidemic t
Peoples perceptions about the size of minority groups in social networks can be biased, often showing systematic over- or underestimation. These social perception biases are often attributed to biased cognitive or motivational processes. Here we show
We study SIS epidemic spreading processes unfolding on a recent generalisation of the activity-driven modelling framework. In this model of time-varying networks each node is described by two variables: activity and attractiveness. The first, describ