ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing spatial networks: A one size fits all efficiency-driven approach

126   0   0.0 ( 0 )
 نشر من قبل Alessio Cardillo
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatial networks are a powerful framework for studying a large variety of systems belonging to a broad diversity of contexts: from transportation to biology, from epidemiology to communications, and migrations, to cite a few. Spatial networks can be described in terms of their total cost (i.e. the total amount of resources needed for building or traveling their connections). Here, we address the issue of how to gauge and compare the quality of spatial network designs (i.e. efficiency vs. total cost) by proposing a two-step methodology. Firstly, we assess the networks design by introducing a quality function based on the concept of networks efficiency. Second, we propose an algorithm to estimate computationally the upper bound of our quality function for a given network. Complementarily, we provide a universal expression to obtain an approximated upper bound to any spatial network, regardless of its size. Smaller differences between the upper bound and the empirical value correspond to better designs. Finally, we test the applicability of this analytic tool-set on spatial network data-sets of different nature.



قيم البحث

اقرأ أيضاً

In this paper, we study a family of conservative bandit problems (CBPs) with sample-path reward constraints, i.e., the learners reward performance must be at least as well as a given baseline at any time. We propose a One-Size-Fits-All solution to CB Ps and present its applications to three encompassed problems, i.e. conservative multi-armed bandits (CMAB), conservative linear bandits (CLB) and conservative contextual combinatorial bandits (CCCB). Different from previous works which consider high probability constraints on the expected reward, we focus on a sample-path constraint on the actually received reward, and achieve better theoretical guarantees ($T$-independent additive regrets instead of $T$-dependent) and empirical performance. Furthermore, we extend the results and consider a novel conservative mean-variance bandit problem (MV-CBP), which measures the learning performance with both the expected reward and variability. For this extended problem, we provide a novel algorithm with $O(1/T)$ normalized additive regrets ($T$-independent in the cumulative form) and validate this result through empirical evaluation.
Motivated by results of Henry, Pralat and Zhang (PNAS 108.21 (2011): 8605-8610), we propose a general scheme for evolving spatial networks in order to reduce their total edge lengths. We study the properties of the equilbria of two networks from this class, which interpolate between three well studied objects: the ErdH{o}s-R{e}nyi random graph, the random geometric graph, and the minimum spanning tree. The first of our two evolutions can be used as a model for a social network where individuals have fixed opinions about a number of issues and adjust their ties to be connected to people with similar views. The second evolution which preserves the connectivity of the network has potential applications in the design of transportation networks and other distribution systems.
152 - Han-Xin Yang , Ming Tang , 2015
In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on {em correlated} networks has not been addressed. Interestingly, we find that the epidemic t hreshold, a fundamental quantity underlying the spreading dynamics, exhibits a non-monotonic behavior in that it can be minimized for some critical value of the assortativity coefficient, a parameter characterizing the network correlation. To understand this phenomenon, we use the degree-based mean-field theory to calculate the traffic-driven epidemic threshold for correlated networks. The theory predicts that the threshold is inversely proportional to the packet-generation rate and the largest eigenvalue of the betweenness matrix. We obtain consistency between theory and numerics. Our results may provide insights into the important problem of controlling/harnessing real-world epidemic spreading dynamics driven by traffic flows.
Peoples perceptions about the size of minority groups in social networks can be biased, often showing systematic over- or underestimation. These social perception biases are often attributed to biased cognitive or motivational processes. Here we show that both over- and underestimation of the size of a minority group can emerge solely from structural properties of social networks. Using a generative network model, we show analytically that these biases depend on the level of homophily and its asymmetric nature, as well as on the size of the minority group. Our model predictions correspond well with empirical data from a cross-cultural survey and with numerical calculations on six real-world networks. We also show under what circumstances individuals can reduce their biases by relying on perceptions of their neighbors. This work advances our understanding of the impact of network structure on social perception biases and offers a quantitative approach for addressing related issues in society.
We study SIS epidemic spreading processes unfolding on a recent generalisation of the activity-driven modelling framework. In this model of time-varying networks each node is described by two variables: activity and attractiveness. The first, describ es the propensity to form connections. The second, defines the propensity to attract them. We derive analytically the epidemic threshold considering the timescale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا