ﻻ يوجد ملخص باللغة العربية
Glioblastoma is a highly invasive brain tumor, whose cells infiltrate surrounding normal brain tissue beyond the lesion outlines visible in the current medical scans. These infiltrative cells are treated mainly by radiotherapy. Existing radiotherapy plans for brain tumors derive from population studies and scarcely account for patient-specific conditions. Here we provide a Bayesian machine learning framework for the rational design of improved, personalized radiotherapy plans using mathematical modeling and patient multimodal medical scans. Our method, for the first time, integrates complementary information from high resolution MRI scans and highly specific FET-PET metabolic maps to infer tumor cell density in glioblastoma patients. The Bayesian framework quantifies imaging and modeling uncertainties and predicts patient-specific tumor cell density with confidence intervals. The proposed methodology relies only on data acquired at a single time point and thus is applicable to standard clinical settings. An initial clinical population study shows that the radiotherapy plans generated from the inferred tumor cell infiltration maps spare more healthy tissue thereby reducing radiation toxicity while yielding comparable accuracy with standard radiotherapy protocols. Moreover, the inferred regions of high tumor cell densities coincide with the tumor radioresistant areas, providing guidance for personalized dose-escalation. The proposed integration of multimodal scans and mathematical modeling provides a robust, non-invasive tool to assist personalized radiotherapy design.
Modeling of brain tumor dynamics has the potential to advance therapeutic planning. Current modeling approaches resort to numerical solvers that simulate the tumor progression according to a given differential equation. Using highly-efficient numeric
We consider Bayesian inference for stochastic differential equation mixed effects models (SDEMEMs) exemplifying tumor response to treatment and regrowth in mice. We produce an extensive study on how a SDEMEM can be fitted using both exact inference b
The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks op
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi
The extremely regular, periodic radio emission from millisecond pulsars makes them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse times of