ﻻ يوجد ملخص باللغة العربية
We consider information characteristics of single qudit state (spin j=9/2), such as von Neumann entropy, von Neumann mutual information. We review different mathematical properties of these information characteristics: subadditivity and strong subadditivity conditions, Araki-Lieb inequality. The inequalities are entropic inequalities for composite systems (bipartite, tripartite), but they can be written for noncomposite systems. Using the density matrix, describing the noncomposite qudit system state in explicit matrix form we proved new entropic inequalities for single qudit state (spin j=9/2). In addition, we also consider the von Neumann information of a qudit toy model as a function of a real parameter. The obtained inequalities describe the quantum hidden correlations in the single qudit system.
The Clebsch-Gordan coefficients of the group SU(2) are shown to satisfy new inequalities. They are obtained using the properties of Shannon and Tsallis entropies. The inequalities associated with the Wigner 3-j symbols are obtained using the relation
We consider the task of performing quantum state tomography on a $d$-state spin qudit, using only measurements of spin projection onto different quantization axes. By an exact mapping onto the classical problem of signal recovery on the sphere, we pr
Using the entropic inequalities for Shannon and Tsallis entropies new inequalities for some classical polynomials are obtained. To this end, an invertible mapping for the irreducible unitary representation of groups $SU(2)$ and $SU(1,1)$ like Jacoby
We discuss the procedure of different partitions in the finite set of $N$ integer numbers and construct generic formulas for a bijective map of real numbers $s_y$, where $y=1,2,ldots,N$, $N=prod limits_{k=1}^{n} X_k$, and $X_k$ are positive integers,
It is a long-standing belief, as pointed out by Bell in 1986, that it is impossible to use a two-mode Gaussian state possessing a positive-definite Wigner function to demonstrate nonlocality as the Wigner function itself provides a local hidden-varia