ﻻ يوجد ملخص باللغة العربية
Parallel code design is a challenging task especially when addressing petascale systems for massive parallel processing (MPP), i.e. parallel computations on several hundreds of thousands of cores. An in-house computational fluid dynamics code, developed by our group, was designed for such high-fidelity runs in order to exhibit excellent scalability values. Basis for this code is an adaptive hierarchical data structure together with an efficient communication and (numerical) computation scheme that supports MPP. For a detailled scalability analysis, we performed several experiments on two of Germanys national supercomputers up to 140,000 processes. In this paper, we will show the results of those experiments and discuss any bottlenecks that could be observed while solving engineering-based problems such as porous media flows or thermal comfort assessments for problem sizes up to several hundred billion degrees of freedom.
This paper investigates the multi-GPU performance of a 3D buoyancy driven cavity solver using MPI and OpenACC directives on different platforms. The paper shows that decomposing the total problem in different dimensions affects the strong scaling per
The Python package fluidsim is introduced in this article as an extensible framework for Computational Fluid Mechanics (CFD) solvers. It is developed as a part of FluidDyn project (Augier et al., 2018), an effort to promote open-source and open-scien
The development of the A64FX processor by Fujitsu has been a massive innovation in vectorized processors and led to Fugaku: the current worlds fastest supercomputer. We use a variety of tools to analyze the behavior and performance of several OpenMP
Using a realistic molecular catalyst system, we conduct scaling studies of ab initio molecular dynamics simulations using the CP2K code on both Intel Xeon CPU and NVIDIA V100 GPU architectures. We explore using process placement and affinity to gain
The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases: the development of a stable numerical discretization, development of a correct (verified) implementation, and the optimization of the i