ﻻ يوجد ملخص باللغة العربية
We describe and analyze observations by the Solar Dynamics Observatory of the emergence of a small, bipolar active region within an area of unipolar magnetic flux that was surrounded by a circular, quiescent filament. Within only eight hours of the start of the emergence, a partial splitting of the filament and two consecutive coronal mass ejections took place. We argue that all three dynamic events occurred as a result of particular magnetic-reconnection episodes between the emerging bipole and the pre-existing coronal magnetic field. In order to substantiate our interpretation, we consider three-dimensional magnetohydrodynamic simulations that model the emergence of magnetic flux in the vicinity of a large-scale coronal flux rope. The simulations qualitatively reproduce most of the reconnection episodes suggested by the observations; as well as the filament-splitting, the first eruption, and the formation of sheared/twisted fields that may have played a role in the second eruption. Our results suggest that the position of emerging flux with respect to the background magnetic configuration is a crucial factor for the resulting evolution, while previous results suggest that parameters such as the orientation or the amount of emerging flux are important as well. This poses a challenge for predicting the onset of eruptions that are triggered by flux emergence, and it calls for a detailed survey of the relevant parameter space by means of numerical simulations.
Flux emergence is widely recognized to play an important role in the initiation of coronal mass ejections. The Chen-Shibata (2000) model, which addresses the connection between emerging flux and flux rope eruptions, can be implemented numerically to
A three-dimensional numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into
Recent observations demonstrated that emerging flux regions, which constitute the early stage of solar active regions, consist of emergence of numerous small-scale magnetic elements. They in turn interact, merge, and form mature sunspots. However, ob
We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope
In G dwarfs, the surface distribution, coverage and lifetimes of starspots deviate from solar-like patterns as the rotation rate increases. We set up a numerical platform which includes the large-scale rotational and surface flow effects, aiming to s