ﻻ يوجد ملخص باللغة العربية
We calculate tree-level contributions to the inclusive rare $bar B to X_{s(d)} , ell^+ell^-$ decays. At the partonic level they stem from the five-particle process $b to s(d) , q bar q , ell^+ell^-$, with $q in {u,d,s}$. While for $b to d$ transitions such five-body final states contribute at the same order in the Wolfenstein expansion compared to the three-body partonic decay, they are CKM suppressed in $b to s$ decays. In the perturbative expansion, we include all leading-order contributions, as well as partial next-to-leading order QCD and QED effects. In the case of the differential branching ratio, we present all results completely analytically in terms of polylogarithmic functions of at most weight three. We also consider the differential forward-backward asymmetry, where all except one interference could be obtained analytically. From a phenomenological point of view the newly calculated contributions are at the percent level or below.
A novel approach to reconstruct inclusive $bar{B} to X_{s} ell^{+}ell^{-}$ decays is presented. The method relies on isopsin symmetry to extrapolate the semi-inclusive signature $X_{b}to K^{+} ell^{+}ell^{-} X$ to the fully inclusive rate in $B^{+}$
Rare inclusive $B$ decays such as $bar{B}to X_{s(d)} ell^+ell^-$ are interesting probes for physics beyond the Standard Model. Due to the complementarity to their exclusive counterparts, they might shed light on the anomalies currently seen in exclus
With the first data being recorded at Belle II, we are at the brink of a new era in quark flavour physics. The many exciting new opportunities for Belle~II include a full angular analysis of inclusive ${bar B to X_{s} , ell^+ell^-}$ which has the pot
Besides being important to determine Standard Model parameters such as the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$, semileptonic $B$ decays seem also promising to reveal new physics (NP) phenomena, in particular in connection with the possibili
Rare semileptonic $b to s ell^+ ell^-$ transitions provide some of the most promising frameworks to search for new physics effects. Recent analyses of these decays have indicated an anomalous behaviour in measurements of angular distributions of the