ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability and magnetic properties of Fe double-layers on Ir (111)

138   0   0.0 ( 0 )
 نشر من قبل Bertrand Dup\\'e
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the interplay between the structural reconstruction and the magnetic properties of Fe doublelayers on Ir (111)-substrate using first-principles calculations based on density functional theory and mapping of the total energies on an atomistic spin model. We show that, if a second Fe monolayer is deposited on Fe/Ir (111), the stacking may change from hexagonal close-packed to bcc (110)-like accompanied by a reduction of symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure. We investigate in detail the changes in the magnetic exchange interaction, the magnetocrystalline anisotropy, and the Dzyaloshinskii Moriya interaction depending on the stacking sequence of the Fe double-layer. Based on our findings, we suggest a new technique to engineer Dzyaloshinskii Moriya interactions in multilayer systems employing symmetry considerations. The resulting anisotropic Dzyaloshinskii-Moriya interactions may stabilize higher-order skyrmions or antiskyrmions.



قيم البحث

اقرأ أيضاً

We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theor y has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism.
We investigate a well defined heterostructure constituted by magnetic Fe layers sandwiched between graphene (Gr) and Ir(111). The challenging task to avoid Fe-C solubility and Fe-Ir intermixing has been achieved with atomic controlled Fe intercalatio n at moderate temperature below 500 K. Upon intercalation of a single ordered Fe layer in registry with the Ir substrate, an intermixing of the Gr bands and Fe d states breaks the symmetry of the Dirac cone, with a downshift in energy of the apex by about 3 eV, and well-localized Fe intermixed states induced in the energy region just below the Fermi level. First principles electronic structure calculations show a large spin splitting of the Fe states, resulting in a majority spin channel almost fully occupied and strongly hybridized with Gr {pi} states. X-ray magnetic circular dichroism on the Gr/Fe/Ir heterostructure reveals an ordered spin configuration with a ferromagnetic response of Fe layer(s), with enhanced spin and orbital configurations with respect to the bcc-Fe bulk values. The magnetization switches from a perpendicular easy magnetization axis when the Fe single layer is lattice matched with the Ir(111) surface to a parallel one when the Fe thin film is almost commensurate with graphene.
143 - E. Simon , K. Palotas , L. Rozsa 2014
We perform an extensive study of the spin-configurations in a PdFe bilayer on Ir(111) in terms of ab initio and spin-model calculations. We use the spin-cluster expansion technique to obtain spin model parameters, and solve the Landau-Lifshitz-Gilber t equations at zero temperature. In particular, we focus on effects of layer relaxations and the evolution of the magnetic ground state in external magnetic field. In the absence of magnetic field, we find a spin-spiral ground state, while applying external magnetic field skyrmions are generated in the system. Based on energy calculations of frozen spin configurations with varying magnetic field we obtain excellent agreement for the phase boundaries with available experiments. We find that the wave length of spin-spirals and the diameter of skyrmions decrease with increasing inward Fe layer relaxation which is correlated with the increasing ratio of the nearest-neighbor Dzyaloshinskii-Moriya interaction and the isotropic exchange coupling, $D/J$. Our results also indicate that the applied field needed to stabilize the skyrmion lattice increases when the diameter of individual skyrmions decreases. Based on our observations, we suggest that the formation of the skyrmion lattice can be tuned by small structural modification of the thin film.
Magnetooptical properties of (Ga,Mn)N layers containing various concentrations of Fe-rich nanocrystals embedded in paramagnetic (Ga,Fe)N layers are reported. Previous studies of such samples demonstrated that magnetization consists of a paramagnetic contribution due to substitutional diluted Fe ions as well as of ferromagnetic and antiferromagnetic components originating from Fe-rich nanocrystals, whose relative abundance can be controlled by the grow conditions. The nanocrystals are found to broaden and to reduce the magnitude of the excitonic features. However, the ferromagnetic contribution, clearly seen in SQUID magnetometry, is not revealed by magnetic circular dichroism (MCD). Possible reasons for differences in magnetic response determined by MCD and SQUID measurements are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا