ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Dark Matter lifetime with a deep gamma-ray survey of the Perseus Galaxy Cluster with MAGIC

125   0   0.0 ( 0 )
 نشر من قبل Joaquim Palacio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clusters of galaxies are the largest known gravitationally bound structures in the Universe, with masses around $10^{15} M_odot$, most of it in the form of dark matter. The ground-based Imaging Atmospheric Cherenkov Telescope MAGIC made a deep survey of the Perseus cluster of galaxies using almost 400 h of data recorded between 2009 and 2017. This is the deepest observational campaign so far on a cluster of galaxies in the very high energy range. We search for gamma-ray signals from dark matter particles in the mass range between 200 GeV and 200 TeV decaying into standard model pairs. We apply an analysis optimized for the spectral and morphological features expected from dark matter decays and find no evidence of decaying dark matter. From this, we conclude that dark matter particles have a decay lifetime longer than $sim10^{26}$~s in all considered channels. Our results improve previous lower limits found by MAGIC and represent the strongest limits on decaying dark matter particles from ground-based gamma-ray instruments.



قيم البحث

اقرأ أيضاً

The Perseus galaxy cluster was observed by the MAGIC Cherenkov telescope for a total effective time of 24.4 hr during 2008 November and December. The resulting upper limits on the gamma-ray emission above 100 GeV are in the range of 4.6 to 7.5 x 10^{ -12} cm^{-2} s^{-1} for spectral indices from -1.5 to -2.5, thereby constraining the emission produced by cosmic rays, dark matter annihilations, and the central radio galaxy NGC1275. Results are compatible with cosmological cluster simulations for the cosmic-ray-induced gamma-ray emission, constraining the average cosmic ray-to-thermal pressure to <4% for the cluster core region (<8% for the entire cluster). Using simplified assumptions adopted in earlier work (a power-law spectrum with an index of -2.1, constant cosmic ray-to-thermal pressure for the peripheral cluster regions while accounting for the adiabatic contraction during the cooling flow formation), we would limit the ratio of cosmic ray-to-thermal energy to E_CR/E_th<3%. The upper limit also translates into a level of gamma-ray emission from possible annihilations of the cluster dark matter (the dominant mass component) that is consistent with boost factors of ~10^4 for the typically expected dark matter annihilation-induced emission. Finally, the upper limits obtained for the gamma-ray emission of the central radio galaxy NGC1275 are consistent with the recent detection by the Fermi-LAT satellite. Due to the extremely large Doppler factors required for the jet, a one-zone synchrotron self-Compton model is implausible in this case. We reproduce the observed spectral energy density by using the structured jet (spine-layer) model which has previously been adopted to explain the high-energy emission of radio galaxies.
Galaxy clusters are being assembled today in the most energetic phase of hierarchical structure formation which manifests itself in powerful shocks that contribute to a substantial energy density of cosmic rays (CRs). Hence, clusters are expected to be luminous gamma-ray emitters since they also act as energy reservoirs for additional CR sources, such as active galactic nuclei and supernova-driven galactic winds. To detect the gamma-ray emission from CR interactions with the ambient cluster gas, we conducted the deepest to date observational campaign targeting a galaxy cluster at very high-energy gamma-rays and observed the Perseus cluster with the MAGIC Cherenkov telescopes for a total of ~85 hr of effective observing time. This campaign resulted in the detection of the central radio galaxy NGC 1275 at energies E > 100 GeV with a very steep energy spectrum. Here, we restrict our analysis to energies E > 630 GeV and detect no significant gamma-ray excess. This constrains the average CR-to-thermal pressure ratio to be <= 1-2%, depending on assumptions and the model for CR emission. Comparing these gamma-ray upper limits to predictions from cosmological cluster simulations that include CRs constrains the maximum CR acceleration efficiency at structure formation shocks to be < 50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Finally, we derive lower limits on the magnetic field distribution assuming that the Perseus radio mini-halo is generated by secondary electrons/positrons that are created in hadronic CR interactions: assuming a spectrum of E^-2.2 around TeV energies as implied by cluster simulations, we limit the central magnetic field to be > 4-9 microG, depending on the rate of decline of the magnetic field strength toward larger radii.
Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse gamma-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most prom ising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E>100 GeV) for a total of 253 hr from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6$^circ$ from the centre, have been detected as point-like VHE gamma-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is well described by a power law with a photon index of $3.6pm0.2_{stat}pm0.2_{syst}$ between 90 GeV and 1.2 TeV. We do not detect any diffuse gamma-ray emission from the cluster and set stringent constraints on its CR population. In order to bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes $alpha$. For $alpha=2.2$, the CR-to-thermal pressure within the cluster virial radius is constrained to be below 1-2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to <20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, $B_0$, that depend on the CR distribution. For $alpha=2.2$, $B_0gtrsim5-8 mu$G, which is below the 25 $mu$G inferred from Faraday rotation measurements, whereas, for $alphalesssim2.1$, the hadronic interpretation of the diffuse radio emission is in contrast with our gamma-ray flux upper limits independently of the magnetic field strength.
Recently, gamma-ray emission in the direction of Coma, with a TS value of $sim 40$, has been reported. In this work we will discuss the possibility of such a residual emission coming from dark matter annihilation. Our results show that the gamma-ray emission within the Coma region is also spatially correlated to the mass distribution derived from weak gravitational lensing measurements very well. However the dark matter models are not supported by the spectral analysis results and constraints by observations of other targets. Thus we derive the upper limits of the dark matter annihilation cross section according to the observation of the Coma region.
In these proceedings we summarize the current status of the study of the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. Gamma-ray emission is expected in galaxy clusters both f rom interactions of cosmic rays (CR) with the intra-cluster medium, or as a product of annihilation or decay of dark matter (DM) particles in case they are weakly interactive massive particles (WIMPs). The observation of Perseus has been proposed as one of the CTA Key Science Projects. In this contribution, we focus on the DM-induced component of the flux. Our DM modelling includes the substructures we expect in the main halo which will boost the annihilation signal significantly. We adopt an ON/OFF observation strategy and simulate the expected gamma-ray signals. Finally we compute the expected CTA sensitivity using a likelihood maximization analysis including the most recent CTA instrument response functions. In absence of signal, we show that CTA will allow us to provide stringent and competitive constraints on TeV DM, especially for the case of DM decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا