ﻻ يوجد ملخص باللغة العربية
Motivated by recent studies related to integrability of string motion in various backgrounds via analytical and numerical procedures, we discuss these procedures for a well known integrable string background $(AdS_5times S^5)_{eta}$. We start by revisiting conclusions from earlier studies on string motion in $(mathbb{R}times S^3)_{eta}$ and $(AdS_3)_{eta}$ and then move on to more complex problems of $(mathbb{R}times S^5)_{eta}$ and $(AdS_5)_{eta}$. Discussing both analytically and numerically, we deduce that while $(AdS_5)_{eta}$ strings do not encounter any irregular trajectories, string motion in the deformed five-sphere can indeed, quite surprisingly, run into chaotic trajectories. We discuss the implications of these results both on the procedures used and the background itself.
Using the pure spinor formalism for the superstring in an $AdS_5times S^5$ background, a simple expression is found for half-BPS vertex operators. At large radius, these vertex operators reduce to the usual supergravity vertex operators in a flat bac
Supertwistors relevant to $AdS_5times S^5$ superbackground of IIB supergravity are studied in the framework of the $D=10$ massless superparticle model in the first-order formulation. Product structure of the background suggests using $D=1+4$ Lorentz-
Using known relation between $SU(2,2|4)$ supertwistors and $SU(2)$ bosonic and fermionic oscillators we identify the physical states of quantized massless $AdS_5times S^5$ superparticle in supertwistor formulation and discuss how they fit into the sp
We explore integrability properties of superstring equations of motion in AdS_5 x S^5. We impose light-cone kappa-symmetry and reparametrization gauges and construct a Lax representation for the corresponding Hamiltonian dynamics on subspace of physi
We describe an effective theory of a scalar field, motivated by some features expected in the low energy theory of gluodynamics in 3+1 dimensions. The theory describes two propagating massless particles in a certain limit, which we identify with the