ﻻ يوجد ملخص باللغة العربية
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jacobi matrices on certain rooted trees. We express their Greens functions and the matrix elements in terms of MOPs. This provides a generalization of the well-known connection between the theory of polynomials orthogonal on the real line and Jacobi matrices on $mathbb{Z}_+$ to higher dimension. We illustrate importance of this connection by proving ratio asymptotics for MOPs using methods of operator theory.
The discrete orthogonality relations hold for all the orthogonal polynomials obeying three term recurrence relations. We show that they also hold for multi-indexed Laguerre and Jacobi polynomials, which are new orthogonal polynomials obtained by defo
We consider discrete Dirac systems as an alternative (to the famous SzegH{o} recurrencies and matrix orthogonal polynomials) approach to the study of the corresponding block Toeplitz matrices. We prove an analog of the Christoffel--Darboux formula an
We study Jacobi matrices on trees whose coefficients are generated by multiple orthogonal polynomials. Hilbert space decomposition into an orthogonal sum of cyclic subspaces is obtained. For each subspace, we find generators and the generalized eigen
A new recurrence relation for exceptional orthogonal polynomials is proposed, which holds for type 1, 2 and 3. As concrete examples, the recurrence relations are given for Xj-Hermite, Laguerre and Jacobi polynomials in j = 1,2 case.
The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive es